Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
이산화질소, 암모니아 및 수분의 기상반응에 의한 이산화질소 제거 거동에 관한 연구
Behavior of Nitrogen Dioxide Removal by the Reaction between Nitrogen Dioxide, Ammonia and Water Vapor in Gas Phase
제주대학교 공과대학 청정화학공학과, 690-756 제주시 아라1동 1 1한국전력연구원 발전연구실 환경화학그룹, 305-380 대전시 유성구 문지동 103-16 2포항공과대학교 화학공학과, 790-784 포하시 남구 효자동 산 31
Department of Chemical Engineering and Clean Technology, Cheju National University, 1 Ara 1-dong, Jejn, 690-756, Korea 1Environment and Chemistry Research Group, Korea Electric Power Research Institute, 103-16 Munji-dong, Yusong-gu, Daejeon 305-380, Korea 2Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784, Korea
smokie@cheju.ac.kr
HWAHAK KONGHAK, February 2003, 41(1), 106-113(8), NONE
Download PDF
Abstract
암모니아 첨가 저온 플라즈마 공정이나 전자빔 공정에서 NO의 산화반응을 통해 생성되는 NO2를 효과적으로 제거하기 위한 조건을 도출하기 위하여, 문헌의 반응속도에 기초한 반응기 모델링을 통해 NO2 저감에 미치는 여러 가지 운전변수의 영향을 살펴보았다. 본 연구에서 운전변수로 선정한 것은 수분함량, 초기 NO2 농도, 반응온도 그리고 암모니아 농도이며, 각각의 운전변수에 대한 적정 범위를 결정하였다. NO2를 효율적으로 제거하기 위해서는 배기가스의 수분함량이 4-6%(v/v) 이상은 되어야 하나, 수분함량을 더 증가시키는 것은 큰 이득이 없는 것으로 나타났다. 초기 NO2 농도가 100 ppm 이하로 작을 때는 원하는 제거효율 달성에 필요한 체류시간이 급격히 증가하며, 반응온도는 낮을수록 NO2 제거에 유리한 것으로 나타났다. NO2 저감 속도는 암모니아의 농도에 크게 의존하지 않는 것으로 평가되었다.
This study reports a simple reactor modeling utilizing chemical kinetic data of the gas phase reaction between nitrogen dioxide, ammonia and water vapor in order to estimate the influences of several operating variables on the removal of NO2 which is generated from NO by the oxidation process in a non-thermal plasma reactor or an electron-beam irradiation reactor. The operating variables chosen are water vapor content, initial concentration of NO2, reaction temperature and ammonia concentration and the appropriate ranges of such variables were suggested. The gas phase reaction for the removal of NO2 takes place effectively at the water vapor content higher than 4-6%(v/v), but further increase in the water vapor content does not significantly enhance the removal. The residence time required to achieve a desired removal efficiency of NO2 was found_x000D_
to rapidly increase when the initial concentration of NO2 is less than 100 ppm. Since the removal rate of NO2 is in inverse proportion to the reaction temperature, lower temperature is favorable to promote the reactions. The effect of ammonia concentration on the removal of NO2 was estimated to be negligible.
References
Tas MA, Vanhardeveld R, Vanveldhuizen EM, Plasma Chem. Plasma Process., 17(4), 371 (1997)
Namba H, Tokunaga O, Tanaka T, Ogura Y, Aoki S, Suzuki R, Radiat. Phys. Chem., 42(4-6), 669 (1993)
Mizuno A, Shimizu K, Chakrabarti A, Dascalescu L, Furuta S, IEEE Trans. Ind. Appl., 31, 957 (1995)
Platzer KH, Willibald U, Gottstein J, Tremmel A, Angele HJ, Zellner K, Radiat. Phys. Chem., 35(1-3), 427 (1990)
Civitano L, Penetrante BM, Schultheis SE, Non-Thermal Plasma Techniques for Pollution Control(NATO ASI Series), Springer-Verlag, Berlin, Germany, 103-130 (1993)
Dinelli G, Civitano L, Rea M, IEEE Trans. Ind. Appl., 26(3), 535 (1990)
Yan K, Hui H, Cui M, Miao J, Wu X, Bao C, Li R, J. electrostatics, 44, 17 (1998)
Willibald U, Platzer KH, Wittig S, Radiat. Phys. Chem., 35(1-3), 422 (1990)
van Veldhuizen EM, Zhou LM, Rutgers WR, Plasma Chem. Plasma Process., 18(1), 91 (1998)
Yan K, Kanazawa S, Ohkubo T, Nomoto Y, Plasma Chem. Plasma Process., 19(3), 421 (1999)
Mok YS, Nam IS, Chem. Eng. Technol., 22(6), 527 (1999)
Mok YS, Kim JH, Nam IS, Ham SW, Ind. Eng. Chem. Res., 39(10), 3938 (2000)
Yamamoto T, Rajanikanth BS, Nishino M, Okubo M, Kuroki T, "Characteristics of the Plasma Reactor on Diesel Emission Control," 12th Int. Symp. high Voltage Eng., Bangalore, India, 1287-1290 (2001)
Jordan S, Radiat. Phys. Chem., 35(1-3), 409 (1990)
Tokunaga O, Namba H, Suzuki N, Int. J. Appl. Radiat. Isot., 36(10), 807 (1985)
Mok Ys, Lee HW, Hyun YJ, J. Electrostatics, 53(3), 195 (2001)
Jang KR, Shim JG, Park TS, Eum HM, Nam CM, Han YW, "Simultaneous Removal of SO2 and NOx Using Pulsed Power Reactor of Cylindrical Type," 3rd Int. Symp. Non-Thermal Plasma Technology for Pollution Control, April, Cheju, Korea, 181-186 (2001)
Mearns AM, Ofosu-Asiedu K, J. Chem. Technol. Biotechnol., 34A, 341 (1984)
Mearns AM, Ofosu-Asiedu K, J. Chem. Technol. Biotechnol., 34A, 350 (1984)
Matzing H, Prigogine I, Rice SA, Advances in Chemical Physics(Vol. LXXX), John Wiley and Sons, 315-402 (1991)
Oda T, Kato T, Takahashi T, Shimizu K, J. Electrostatics, 42, 152 (1997)
Shin DH, Jeon SG, Kwon JS, Kim KH, Moon SH, "Decomposition of NOx by Combination of Non-Thermal Plasma and Catalysts," 3rd Int. Symp. Non-Thermal Plasma Technology for Pollution Control, April, Cheju, Korea, 223-227 (2001)
Namba H, Tokunaga O, Tanaka T, Ogura Y, Aoki S, Suzuki R, Radiat. Phys. Chem., 42(4-6), 669 (1993)
Mizuno A, Shimizu K, Chakrabarti A, Dascalescu L, Furuta S, IEEE Trans. Ind. Appl., 31, 957 (1995)
Platzer KH, Willibald U, Gottstein J, Tremmel A, Angele HJ, Zellner K, Radiat. Phys. Chem., 35(1-3), 427 (1990)
Civitano L, Penetrante BM, Schultheis SE, Non-Thermal Plasma Techniques for Pollution Control(NATO ASI Series), Springer-Verlag, Berlin, Germany, 103-130 (1993)
Dinelli G, Civitano L, Rea M, IEEE Trans. Ind. Appl., 26(3), 535 (1990)
Yan K, Hui H, Cui M, Miao J, Wu X, Bao C, Li R, J. electrostatics, 44, 17 (1998)
Willibald U, Platzer KH, Wittig S, Radiat. Phys. Chem., 35(1-3), 422 (1990)
van Veldhuizen EM, Zhou LM, Rutgers WR, Plasma Chem. Plasma Process., 18(1), 91 (1998)
Yan K, Kanazawa S, Ohkubo T, Nomoto Y, Plasma Chem. Plasma Process., 19(3), 421 (1999)
Mok YS, Nam IS, Chem. Eng. Technol., 22(6), 527 (1999)
Mok YS, Kim JH, Nam IS, Ham SW, Ind. Eng. Chem. Res., 39(10), 3938 (2000)
Yamamoto T, Rajanikanth BS, Nishino M, Okubo M, Kuroki T, "Characteristics of the Plasma Reactor on Diesel Emission Control," 12th Int. Symp. high Voltage Eng., Bangalore, India, 1287-1290 (2001)
Jordan S, Radiat. Phys. Chem., 35(1-3), 409 (1990)
Tokunaga O, Namba H, Suzuki N, Int. J. Appl. Radiat. Isot., 36(10), 807 (1985)
Mok Ys, Lee HW, Hyun YJ, J. Electrostatics, 53(3), 195 (2001)
Jang KR, Shim JG, Park TS, Eum HM, Nam CM, Han YW, "Simultaneous Removal of SO2 and NOx Using Pulsed Power Reactor of Cylindrical Type," 3rd Int. Symp. Non-Thermal Plasma Technology for Pollution Control, April, Cheju, Korea, 181-186 (2001)
Mearns AM, Ofosu-Asiedu K, J. Chem. Technol. Biotechnol., 34A, 341 (1984)
Mearns AM, Ofosu-Asiedu K, J. Chem. Technol. Biotechnol., 34A, 350 (1984)
Matzing H, Prigogine I, Rice SA, Advances in Chemical Physics(Vol. LXXX), John Wiley and Sons, 315-402 (1991)
Oda T, Kato T, Takahashi T, Shimizu K, J. Electrostatics, 42, 152 (1997)
Shin DH, Jeon SG, Kwon JS, Kim KH, Moon SH, "Decomposition of NOx by Combination of Non-Thermal Plasma and Catalysts," 3rd Int. Symp. Non-Thermal Plasma Technology for Pollution Control, April, Cheju, Korea, 223-227 (2001)