Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
LiNiO2의 합성 최적조건 확립 및 과량의 리튬함량과 Al 도핑이 전기화학적 특성에 미치는 영향
Optimization of LiNiO2 Synthetic Condition and Effect of Excess Lithium and Al Doping on Electrochemical Characteristics of the Lithium Nickel Oxides
전북대학교 공과대학 화학공학부, 561-759 전주시 덕진구 덕진동 1가 664-14 1한양대학교 공업화학과, 133-790 서울시 성동구 행당동 17 2사가대학교 응용화학부, 1 Honjo, Saga 840-8502
School of Chemical Engineering and Technology, Chonbuk National University, 664-14 1ga, Duckjin-dong,Duckjin-gu, Jeonju 561-756, Korea 1Department of Industrial Chemistry, College of Engineering, Hanyang University, 17 Haengdang-dong,Seongdong-gu, Seoul 133-791, Korea 2Department of Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
nahmks@kmoak.chonbuk.ac.kr
HWAHAK KONGHAK, February 2003, 41(1), 68-74(7), NONE
Download PDF
Abstract
졸-겔법을 이용하여 LiNiO2, Li1+xNiO2(x=0.00-0.05) 및 LiAlyNi1-yO2(y=0.0-0.3)을 합성하였다. 우수한 전기화학적 성능을 보이는 LiNiO2를 합성하기 위해 금속이온에 대한 아디프산의 몰비의 영향, 리튬의 함량, Al의 도핑의 영향을 실험하였다. 그 결과 합성된 LiNiO2는 아디프산과 총 금속이온의 몰비가 1.0일 때 우수한 결정 특성을 나타내었다. 겔 전구체가 분해되는 동안 발생하는 기체를 분석한 결과 LiNiO2의 결정성을 향상시키는데 산소가 매우 중요한 역할을 하는 것을 관찰하였다. 합성한 Li1+xNiO2는 모두 전형적인 층상구조를 나타내었으나 리튬함량이 증가하면 전기화학적 특성이 저하됨을 관찰할 수 있었다. Al을 도핑한 시료는 도핑되지 않은 LiNiO2보다 초기용량은 낮지만 우수한 사이클 특성을 나타내었다. Al 도핑된 LiAlyNi1-yO2는 고온에서도 전기화학적 특성이 우수함을 관찰할 수 있었다.
LiNiO2, Li1+xNiO2(x=0.00-0.05) and LiAlyNi1-yO2(y=0.0-0.3) powders were synthesized using a sol-gel method. To synthesize LiNiO2 with a good electrochemical performance, the experiments were carried out as function of the molar ratio of adipic acid to total metal ions, excess Li content, and Al doping. The synthesized LiNiO2 powders showed a good crystal quality when the molar ratio of adipic acid to total metal ions was 1.0. The analysis of gas composition evolved during the decomposition of gel precursors revealed that oxygen played an important role in improving the crystal quality of LiNiO2 powders. All the prepared Li1+xNiO2 powders had a typical LiNiO2 layered structure, but the electrochemical performance was degraded with the increasing the lithium content. Al-doped LiAlyNi1-yO2 powders were better than LiNiO2 powders in cyclicality_x000D_
though it showed a low initial discharge capacity. The Al doped LiAlyNi1-yO2 powders presented a good electrochemical performance even at higher temperatures.
Keywords
References
Mizushima K, Jones PC, Wiseman PJ, Goodenough JB, Mater. Res. Bull., 15, 783 (1980)
Plichta C, Salomon M, Slane S, Uchiyoma M, Chua B, Ebner WB, Lin HW, J. Power Sources, 21, 25 (1987)
Dahn JR, VonSacken U, Michel CA, Solid State Ion., 44, 87 (1990)
Delmas C, Mater. Sci. Eng., B3, 97 (1989)
Wells AF, Structural Inorganic Chemistry, 5th ed., Oxford Science Publications, 577
Reimers JN, Li W, Rossen E, Dahn JR, MRS Symp. Proc., 293, 254 (1980)
Ohzuku T, Komori H, Nagayama M, Sawai K, Hirai T, Chem. Express, 6, 161 (1991)
Arai H, Okada S, Ohtsuka H, Ichimura M, Yamaki J, Solid State Ion., 80(3-4), 261 (1995)
Arai H, Okada S, Sakurai Y, Yamaki J, J. Electrochem. Soc., 144(9), 3117 (1997)
Arai H, Okada S, Sakurai Y, Yamaki J, Solid State Ion., 109(3-4), 295 (1998)
Bach S, Henry M, Battier N, Livage J, J. Solid State Chem., 88, 325 (1990)
Yokokawa H, Sakai N, Kawada T, Dokiya M, Solid State Ion., 52, 43 (1992)
Ohzuku T, Yanagawa T, Kouguchi M, Ueda A, J. Power Sources, 68(1), 131 (1997)
Nitta Y, Okamura K, Haraguchi K, Kobayashi S, Ohta A, J. Power Sources, 54, 511 (1995)
Banov B, Bourilkov J, Mladenov M, J. Power Sources, 54, 268 (1995)
Nishida Y, Nakane Y, Satoh T, J. Power Sources, 68(2), 561 (1997)
Arai H, Okada S, Sakurai Y, Yamaki J, J. Electrochem. Soc., 144(9), 3117 (1997)
Gao Y, Yakovleva MV, Ebner WB, Electrochem. Solid-State Lett., 1, 117 (1998)
Kwon SW, Hwang ST, Park SB, HWAHAK KONGHAK, 34(3), 383 (1996)
Yamada S, Fujiwara M, Kanda M, J. Power Sources, 54, 209 (1995)
Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK, J. Power Sources, 76(2), 141 (1998)
Okada M, Takahashi K, Mouri T, J. Power Sources, 68(2), 545 (1997)
Lee YS, Sun YK, Nahm KS, Solid State Ion., 118(1-2), 159 (1999)
Morales J, Peres-Vicente C, Tirado JL, Mater. Res. Bull., 25, 623 (1990)
Ohzuku T, ueda A, Nagayama M, J. Electrochem. Soc., 140, 1862 (1993)
Ohzuku T, Ueda A, Kouguchi M, J. Electrochem. Soc., 142(12), 4033 (1995)
Kubo K, Fujiwara M, Yamada S, Arai S, Kanda M, J. Power Sources, 68(2), 553 (1997)
Li W, Reimers JN, Dahn JR, Solid State Ion., 67, 123 (1993)
Lejus AM, Collongues R, C.R., 254, 2005 (1962)
Zhong Q, Sacken U, J. Power Sources, 54, 221 (1995)
Dean JA, Langes Handbook of Chemistry, McGraw-Hill, Inc., 4th ed., 4.12-4.38 (1992)
Plichta C, Salomon M, Slane S, Uchiyoma M, Chua B, Ebner WB, Lin HW, J. Power Sources, 21, 25 (1987)
Dahn JR, VonSacken U, Michel CA, Solid State Ion., 44, 87 (1990)
Delmas C, Mater. Sci. Eng., B3, 97 (1989)
Wells AF, Structural Inorganic Chemistry, 5th ed., Oxford Science Publications, 577
Reimers JN, Li W, Rossen E, Dahn JR, MRS Symp. Proc., 293, 254 (1980)
Ohzuku T, Komori H, Nagayama M, Sawai K, Hirai T, Chem. Express, 6, 161 (1991)
Arai H, Okada S, Ohtsuka H, Ichimura M, Yamaki J, Solid State Ion., 80(3-4), 261 (1995)
Arai H, Okada S, Sakurai Y, Yamaki J, J. Electrochem. Soc., 144(9), 3117 (1997)
Arai H, Okada S, Sakurai Y, Yamaki J, Solid State Ion., 109(3-4), 295 (1998)
Bach S, Henry M, Battier N, Livage J, J. Solid State Chem., 88, 325 (1990)
Yokokawa H, Sakai N, Kawada T, Dokiya M, Solid State Ion., 52, 43 (1992)
Ohzuku T, Yanagawa T, Kouguchi M, Ueda A, J. Power Sources, 68(1), 131 (1997)
Nitta Y, Okamura K, Haraguchi K, Kobayashi S, Ohta A, J. Power Sources, 54, 511 (1995)
Banov B, Bourilkov J, Mladenov M, J. Power Sources, 54, 268 (1995)
Nishida Y, Nakane Y, Satoh T, J. Power Sources, 68(2), 561 (1997)
Arai H, Okada S, Sakurai Y, Yamaki J, J. Electrochem. Soc., 144(9), 3117 (1997)
Gao Y, Yakovleva MV, Ebner WB, Electrochem. Solid-State Lett., 1, 117 (1998)
Kwon SW, Hwang ST, Park SB, HWAHAK KONGHAK, 34(3), 383 (1996)
Yamada S, Fujiwara M, Kanda M, J. Power Sources, 54, 209 (1995)
Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK, J. Power Sources, 76(2), 141 (1998)
Okada M, Takahashi K, Mouri T, J. Power Sources, 68(2), 545 (1997)
Lee YS, Sun YK, Nahm KS, Solid State Ion., 118(1-2), 159 (1999)
Morales J, Peres-Vicente C, Tirado JL, Mater. Res. Bull., 25, 623 (1990)
Ohzuku T, ueda A, Nagayama M, J. Electrochem. Soc., 140, 1862 (1993)
Ohzuku T, Ueda A, Kouguchi M, J. Electrochem. Soc., 142(12), 4033 (1995)
Kubo K, Fujiwara M, Yamada S, Arai S, Kanda M, J. Power Sources, 68(2), 553 (1997)
Li W, Reimers JN, Dahn JR, Solid State Ion., 67, 123 (1993)
Lejus AM, Collongues R, C.R., 254, 2005 (1962)
Zhong Q, Sacken U, J. Power Sources, 54, 221 (1995)
Dean JA, Langes Handbook of Chemistry, McGraw-Hill, Inc., 4th ed., 4.12-4.38 (1992)