Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
TiO2 박막 코팅 전극체를 이용한 광폭매-전해 반응기에서 4CP 분해 연구
A Study of 4CP Decomposition by an Electrolytic-Photocatalytic Reactor Using an Electrode Coated with TiO2
한국원자력연구소, 305-600 대전시 유성구 덕진동 150 1한남대학교 화학공학과, 306-798 대전시 대덕구 오정동 133 2기술신용보증기금, 600-014 부산시 중구 중앙동 4가 17-7 3(주)나노, 660-882 진주시 사봉 11081-1
Korea Atomic Energy Research Institute, 150, Dukjin dong, Yusong-gu, Daejeon 305-600, Korea 1Department of Chemical Engineering, Hannam University, 133, Ojeong-dong, Daedeok-gu, Daejeon 306-798, Korea 2Busan Technology Appraisal Center, Korea Technology Credit Guarantee Fund, 17-7, Joongang-dong 4 ka, Joong-gu, Busan 600-014, Korea 3NANO Co. Ltd., 11081-1, Sabong, Jinju 660-882, Korea
nkwkim@kaeri.re.kr
HWAHAK KONGHAK, April 2003, 41(2), 160-166(7), NONE
Download PDF
Abstract
TiO2 광촉매에 반응에 의해 생성된 전자-전공 쌍의 재결합 억제를 통한 광촉매 반응의 증진 효과를 보기 위하여, anatase 구조의 TiO2 박막, 높은 비표면적 그리고 낮은 표면저항을 갖는 전극을 양극으로 사용하는 광촉매-전해 반응기에 의한 4CP의 TOC 분해 실험을 수행하였다. UV의 조사와 산소가 발생되는 전위가 공급되는 광촉매성 양극은 전극 표면의 광촉매 반응에 의해 발생된 전자를 음극으로 빼어 내며, 전해 반응에 의해 발생되는 산소가 전자 수용체로 작용하는 효과에 의해 약 90% 정도의 광분해 증진 효과를 보였다. 이 광촉매 증진 효과는 광촉매-전해 반응기에 공급되는 셀 전압이 일정 이상에서만 나타났다. RuO2과 IrO2 산화막을 가지는 촉매성 산화물 전극의 광촉매 반응은 전극 제작을 위한 소결 시 Ti 지지체 자체의 산화로부터 생성되어 전극 표면에 존재하게 되는 TiO2에 의한 것이었다.
In order to study an enhancement of TiO2 photocatalytic reaction efficiency by a prohibition of the recombination of photogenerated electron-hole pairs, a degradation of TOC of 4CP was carried out by using a photocatalytic-electrolysis reactor with an anode coated with a TiO2 thin film of anatase structure, a low surface resistivity, and a large surface area. At the photocatalytic anode under UV irradiation and with a potential to generate oxygen gas evolution being applied, the photocatalytic enhancement was about 90% because of taking out the generated electrons through an external bias into a cathode, and because of the oxygen generated by electrolysis reaction acting as an acceptor to the electrons. The photocatalytic enhancement effect occurred only when the cell voltage applied to the photocatalytic-electrolysis reactor was over a certain value. The photocatalytic reaction observed on the catalytic oxide electrodes of RuO2 and IrO2 was because of the existence of TiO2 on the electrode surface caused due to the oxidation of Ti substrate itself during sintering for the fabrication of the electrodes.
References
Yang T, Wan W, J. Photochem. Photobiol. A-Chem., 69, 241 (1992)
Muraki H, Saji T, Fujihira M, Aoyagui S, J. Electroanal. Chem., 169, 319 (1984)
Matsumoto Y, Shimuzu T, Sato E, Electrochim. Acta, 27, 419 (1982)
Bard AJ, J. Photochem., 10, 59 (1979)
Jung KY, Park SB, Appl. Catal. B: Environ., 25(4), 249 (2000)
Zane D, Decker F, Razzini G, Electrochim. Acta, 38, 37 (1993)
Gerischer H, Electrochim. Acta, 38, 3 (1993)
Litter MI, Appl. Catal. B: Environ., 23(2-3), 89 (1999)
Hagfeldt A, Gratzel M, Chem. Rev., 95(1), 49 (1995)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Rajeshwwar K, Ibanez JG, Environmental Electrochemistry, Academic Press Inc., London (1997)
Scott K, Electrochemical Process for Clean Technology, The Royal Society of Chemistry, U.K. (1995)
Kinoshida K, Electrochemical Oxygen Technology John Wiley & Sons, Inc., N.Y. (1992)
Trasatti S, Electrode of Conductive Metallic Oxides, Part A, Elsevier Sci. Pub., Co., Amsterdam (1980)
Trasatti S, Electrochim. Acta, 29(11), 1503 (1984)
Comninellis C, Electrochim. Acta, 39(11-12), 1857 (1994)
Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, Electrochim. Acta, 46(6), 915 (2001)
Kim KW, Lee EH, Kim JS, Shin KH, Jung BI, Electrochim. Acta, 47(15), 2525 (2002)
Kim KW, Lee EH, Kim JS, Shin KH, Jung BI, J. Electrochem. Soc., 149(12), D187 (2002)
Silva LA, Alves VA, Silva MAPD, Trasatti S, Boots JFC, Can. J. Chem., 75, 1483 (1997)
Krysa J, Kule L, Mraz R, Rousar I, J. Appl. Electrochem., 26(10), 999 (1996)
Krysa J, Mraz R, Electrochim. Acta, 40(12), 1997 (1995)
Jung KS, Lee HI, J. Korean Chem. Soc., 41(12), 682 (1997)
Kurtz RL, Stockbauer R, Madey TE, Surf. Sci., 218, 178 (1989)
Bourgeois S, Jomard F, Perdereau M, Surf. Sci., 279, 349 (1992)
Smith PB, Bernasek SL, Surf. Sci., 188, 241 (1987)
Kim KW, Lee EH, Kim YJ, Kim KH, Shin DW, J. Photochem. Photobiol. A-Chem. (2003)
Galizzioli D, Tantardini F, Trasatti S, J. Appl. Electrochem., 5, 203 (1975)
Galizzioli D, Tantardini F, Trasatti S, J. Appl. Electrochem., 4, 57 (1974)
Yeo RS, Orehotsky J, Visscher W, Srinivasan S, J. Electrochem. Soc., 128(9), 1900 (1981)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
Angelinetta C, Trasatti S, Mater. Chem. Phys., 22, 231 (1989)
Battisti AD, Brina R, Gaveeli G, Benedetti A, Fagherazzi G, J. Electroanal. Chem., 200, 93 (1986)
Muraki H, Saji T, Fujihira M, Aoyagui S, J. Electroanal. Chem., 169, 319 (1984)
Matsumoto Y, Shimuzu T, Sato E, Electrochim. Acta, 27, 419 (1982)
Bard AJ, J. Photochem., 10, 59 (1979)
Jung KY, Park SB, Appl. Catal. B: Environ., 25(4), 249 (2000)
Zane D, Decker F, Razzini G, Electrochim. Acta, 38, 37 (1993)
Gerischer H, Electrochim. Acta, 38, 3 (1993)
Litter MI, Appl. Catal. B: Environ., 23(2-3), 89 (1999)
Hagfeldt A, Gratzel M, Chem. Rev., 95(1), 49 (1995)
Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
Rajeshwwar K, Ibanez JG, Environmental Electrochemistry, Academic Press Inc., London (1997)
Scott K, Electrochemical Process for Clean Technology, The Royal Society of Chemistry, U.K. (1995)
Kinoshida K, Electrochemical Oxygen Technology John Wiley & Sons, Inc., N.Y. (1992)
Trasatti S, Electrode of Conductive Metallic Oxides, Part A, Elsevier Sci. Pub., Co., Amsterdam (1980)
Trasatti S, Electrochim. Acta, 29(11), 1503 (1984)
Comninellis C, Electrochim. Acta, 39(11-12), 1857 (1994)
Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, Electrochim. Acta, 46(6), 915 (2001)
Kim KW, Lee EH, Kim JS, Shin KH, Jung BI, Electrochim. Acta, 47(15), 2525 (2002)
Kim KW, Lee EH, Kim JS, Shin KH, Jung BI, J. Electrochem. Soc., 149(12), D187 (2002)
Silva LA, Alves VA, Silva MAPD, Trasatti S, Boots JFC, Can. J. Chem., 75, 1483 (1997)
Krysa J, Kule L, Mraz R, Rousar I, J. Appl. Electrochem., 26(10), 999 (1996)
Krysa J, Mraz R, Electrochim. Acta, 40(12), 1997 (1995)
Jung KS, Lee HI, J. Korean Chem. Soc., 41(12), 682 (1997)
Kurtz RL, Stockbauer R, Madey TE, Surf. Sci., 218, 178 (1989)
Bourgeois S, Jomard F, Perdereau M, Surf. Sci., 279, 349 (1992)
Smith PB, Bernasek SL, Surf. Sci., 188, 241 (1987)
Kim KW, Lee EH, Kim YJ, Kim KH, Shin DW, J. Photochem. Photobiol. A-Chem. (2003)
Galizzioli D, Tantardini F, Trasatti S, J. Appl. Electrochem., 5, 203 (1975)
Galizzioli D, Tantardini F, Trasatti S, J. Appl. Electrochem., 4, 57 (1974)
Yeo RS, Orehotsky J, Visscher W, Srinivasan S, J. Electrochem. Soc., 128(9), 1900 (1981)
Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
Angelinetta C, Trasatti S, Mater. Chem. Phys., 22, 231 (1989)
Battisti AD, Brina R, Gaveeli G, Benedetti A, Fagherazzi G, J. Electroanal. Chem., 200, 93 (1986)