Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
흐름 반응기에서 요소용액을 이용한 질소산화물의 선택적 무촉매 환원반응
The Selective Non-Catalytic Reduction Reaction of NOx Using Urea Solution in a Flow Reactor
광운대학교 환경공학과, 139-701 서울시 노원구 월계동 447-1 1한국과학기술연구원 나노환경연구센터, 136-791 서울시 성북구 하월곡동 39-1
Department of Environmental Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701, Korea 1Eco-Nano Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Korea
HWAHAK KONGHAK, April 2003, 41(2), 219-223(5), NONE
Download PDF
Abstract
흐름반응기에서 반응온도, NSR(Normalized Stoichiometric Ratio), 가스체류시간이 요소용액에 의한 NOx 환원반응에 미치는 영향을 고찰하였다. 요소용액에 의한 최대의 NOx 제거율은 950-1,000 ℃에서 나타났으며 체류시간이 증가할수록 NOx 제거율은 증가하였다. 반응온도 950 ℃에서 NSR값을 증가시킬수록 NOx 전환율이 증가하였으며 NSR 1.5 이상에서는 일정한 전환율을 유지하였다. 계면활성제로 선형알킬벤젠술폰산을 요소용액에 첨가하는 경우 반응온도 800 ℃ 이하에서도 NOx 저감율이 향상되었으며 70% 이상의 효율을 보이는 반응온도창도 800-1,000 ℃로 확대되었다. α-올레핀술폰산과 코코넛오일을 첨가한 경우도 NOx 제거반응의 최적 반응온도가 감소하였고 온도창이 넓어졌다.
The effect of reaction temperature, NSR(Normalized Stoichiometric Ratio), gas residence time, surfactant species on the reduction reaction of NOx with urea solution have been determined in a flow reactor. The maximum conversion of NOx reduction by urea solution appears about 950-1,000 ℃ and increases with increasing the gas residence time. Conversion of NOx reduction increases with increasing NSR up to 1.5 and then remains constant at 950 ℃. The addition of linear alkylbenzen sulfonate(LAS) into urea solution enhances the conversion of NOx reduction at lower temperature below 800 ℃ and the temperature window showing the NOx removal efficeiny above 70% is widen to 800-1,000 ℃. Addition of α-olefin sulfonate and coconut oil also shows the reduction of the optimum temperature and the widening of temperature window for NOx reduction.
Keywords
References
Cooper CD, Alley FC, Air Pollution Control A Design Approach, 2nd ed., Waveland Press, Inc., Illinois (1994)
Lee JB, Kim SD, J. Chem. Eng. Jpn., 29(4), 620 (1996)
Lee JB, Kim SD, Chem. Eng. J., 69(2), 99 (1998)
Jeong SM, Jung SH, Yoo KS, Kim SD, Ind. Eng. Chem. Res., 38(6), 2210 (1999)
Shin MS, Jang DS, Kim DC, J. KSEE, 24(1), 145 (2002)
Lyon RK, Int. J. Chem. Kinet., 8, 315 (1976)
Haynes BS, Combust. Flame, 28, 81 (1977)
Lim YI, Yoo KS, Jeong SM, Kim SD, Lee JB, Choi BS, HWAHAK KONGHAK, 35(1), 83 (1997)
Jodal M, Lauridson TL, Dam-Johansen K, Environ. Prog., 11, 296 (1992)
Kasuya F, Glarborg P, Johnsson JE, Damjohansen K, Chem. Eng. Sci., 50(9), 1455 (1995)
Lyon RK, Hardy JE, Ind. Eng. Chem. Fundam., 25(1), 19 (1986)
Lodder P, Leffers JB, Chem. Eng. J., 30, 161 (1985)
Leckner B, Karlsson M, Dam-Johnsen K, Weinell CE, Kilpinen P, Hupa M, Ind. Eng. Chem. Res., 30, 2396 (1991)
Zamansky VM, Lissianski VV, Maly PM, Ho L, Rusli D, Gardiner WC, Combust. Flame, 117(4), 821 (1999)
Lee JB, Kim SD, J. Chem. Eng. Jpn., 29(4), 620 (1996)
Lee JB, Kim SD, Chem. Eng. J., 69(2), 99 (1998)
Jeong SM, Jung SH, Yoo KS, Kim SD, Ind. Eng. Chem. Res., 38(6), 2210 (1999)
Shin MS, Jang DS, Kim DC, J. KSEE, 24(1), 145 (2002)
Lyon RK, Int. J. Chem. Kinet., 8, 315 (1976)
Haynes BS, Combust. Flame, 28, 81 (1977)
Lim YI, Yoo KS, Jeong SM, Kim SD, Lee JB, Choi BS, HWAHAK KONGHAK, 35(1), 83 (1997)
Jodal M, Lauridson TL, Dam-Johansen K, Environ. Prog., 11, 296 (1992)
Kasuya F, Glarborg P, Johnsson JE, Damjohansen K, Chem. Eng. Sci., 50(9), 1455 (1995)
Lyon RK, Hardy JE, Ind. Eng. Chem. Fundam., 25(1), 19 (1986)
Lodder P, Leffers JB, Chem. Eng. J., 30, 161 (1985)
Leckner B, Karlsson M, Dam-Johnsen K, Weinell CE, Kilpinen P, Hupa M, Ind. Eng. Chem. Res., 30, 2396 (1991)
Zamansky VM, Lissianski VV, Maly PM, Ho L, Rusli D, Gardiner WC, Combust. Flame, 117(4), 821 (1999)