Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
유전체 충전형 플라즈마 반응기를 이용한 Trichloroethylene의 분해반응
Decomposition of Trichloroethylene Using a Ferroelectric Packed-Bed Plasma Reactor
국방과학연구소 화생부, 300-600 대전시 유성우체국 사서함 35-1
Department of Chemical and Biological Defense, Agency for Defense Development, Yuseong P.O. Box 35-1, Daejeon 305-600, Korea
hwlee@add.re.kr
HWAHAK KONGHAK, June 2003, 41(3), 368-376(9), NONE
Download PDF
Abstract
유전체 충전형 플라즈마 반응기를 이용하여 공기중 trichloroethylene (TCE)의 분해반응에 대한 연구를 수행하였다. 방전전력, 체류시간 및 반응물 유입농도 등과 같은 여러 가지 운전변수에 따른 TCE의 분해효율을 조사하고, 반응 부산물의 분석을 통하여 TCE 분해 반응 메커니즘을 제시하였다. 실험결과 방전전력 및 체류시간이 증가함에 따라 TCE 분해효율은 증가하였으나 유입농도의 변화에 대한 영향은 거의 없었다. BaTiO3를 충전한 반응기가 알루미나를 충전한 반응기보다 분해효율이 높았으나 TCE의 완전 산화분해의 척도가 되는 COx(CO+CO2)의 수율 및 CO2의 선택도는 BaTiO3를 충전한 반응기보다 알루미나를 충전한 반응기가 월등하게 높았다. 반응생성물 분석결과 주반응 생성물은 COx, CHCl2COCl, C2H2Cl2O2 및 COCl2로 공기중 TCE의 분해 메커니즘은 주로 ClO와 OH 라디칼에 의한 반응으로 판단된다.
The decomposition of trichloroethylene (TCE) in air using a ferroelectric packed-bed reactor was studied. The effects of discharge power, residence time, inlet concentration and other operating conditions on the decomposition efficiency were investigated and the analysis of reaction products was conducted to suggest the mechanism of TCE decomposition. Experimental results showed that the decomposition efficiency of TCE increased with increasing discharge power and residence time but was unaffected by inlet concentration. The decomposition efficiency for BaTiO3 packed reactor was higher than that for alumina packed reactor, but the yield of COx(CO+CO2) and selectivity of CO2 as the measure of the complete oxidation of TCE were higher in alumina packed reactor. The main products of TCE decomposition were COx, CHCl2COCl, C2H2Cl2O2 and COCl2. On the basis of the results, it is inferred that the decompositon of TCE in air proceeds by OH and ClO radical reaction mechanism.
References
Moretti EC, Mukhopadhyay N, Chem. Eng. Prog., 89(7), 20 (1993)
Ruddy EN, Caroll LA, Chem. Eng. Prog., 89(7), 28 (1993)
Vercammen KLL, Berezin AA, Lox F, Chang JS, J. Adv. Oxid. Technol., 2(2), 312 (1997)
Chang Js, Lawless PA, Yamamoto T, IEEE Trans. Plasma Sci., 19(6), 1152 (1991)
Nunez CM, Ramsey GH, Air Waste, 43, 242 (1993)
Yamamoto T, J. Electrost., 42, 227 (1997)
Rosocha LA, Korzekwa RA, J. Adv. Oxid. Technol., 4(3), 247 (1999)
Joshi SS, Trans. Faraday Soc., 23, 227 (1927)
Joshi SS, Trans. Faraday Soc., 25, 137 (1929)
Futamura S, Zhang A, Yamamoto T, IEEE Trans. Ind. Appl., 34(4), 760 (1999)
Hsiao MC, Merritt BT, Penetrante BM, J. Appl. Phys., 78(5), 3451 (1995)
Masuda S, "Destruction of Gaseous Pollutants and Air Toxics by Surface Discharge Induced Plasma Chemical Process(SPCP) and Pulse Corona Induced Plasma Chemical Process(PPCP)," NATO ASI Series G34 Part B, 199-209 (1993)
Yamamoto T, Lawless PA, "Decomposition of Volatile Organic Compounds by a Packed-Bed Reactor and a Pulsed-Corona Plasma Reactor," NATO ASI Series G34 Part B, 223-238 (1993)
Oda T, Takahashi T, Tada K, IEEE Trans. Ind. Appl., 35(2), 373 (1999)
Evans D, Rosocha LA, Anderson GK, Coogan JJ, J. Appl. Phys., 74(9), 5378 (1993)
Tonkyn RG, Barlow SE, Orlando TM, J. Appl. Phys., 80(9), 4877 (1996)
Chang MB, Chang CC, AIChE J., 43(5), 1325 (1997)
Oda T, Yamashita R, Takahashi T, Masuda S, IEEE Trans. Ind. Appl., 32(2), 227 (1996)
Oda T, Yamashita R, Haga I, Takahashi T, Masuda S, IEEE Trans. Ind. Appl., 32(1), 118 (1996)
Ogata A, Shintani N, Mizuno K, Yamamoto T, IEEE Trans. Ind. Appl., 35(4), 753 (1999)
Zhang R, Yamamoto T, Bundy DS, IEEE Trans. Ind. Appl., 32(1), 113 (1996)
Futamura S, Yamamoto T, IEEE Trans. Ind. Appl., 33(2), 447 (1997)
Futamura S, Zhang A, Prieto G, Yamamoto T, IEEE Trans. Ind. Appl., 34(5), 967 (1998)
Choi YS, Song YH, Kim SJ, Kim BU, HWAHAK KONGHAK, 38(3), 423 (2000)
Yamamoto T, Mizuno K, Tamori I, IEEE Trans. Ind. Appl., 32(1), 100 (1996)
Ogata A, Yamanouchi K, Mizuno K, Yamamoto T, IEEE Trans. Ind. Appl., 35(6), 1289 (1999)
Oda T, Takahashi T, Yamaji K, IEEE Trans. Ind. Appl., 38(3), 873 (2002)
Francke KP, Miessner H, Rudolph R, Plasma Chem. Plasma Process., 20(3), 393 (2000)
Feng R, Castle GSP, IEEE Trans. Ind. Appl., 34(3), 563 (1998)
Ruddy EN, Caroll LA, Chem. Eng. Prog., 89(7), 28 (1993)
Vercammen KLL, Berezin AA, Lox F, Chang JS, J. Adv. Oxid. Technol., 2(2), 312 (1997)
Chang Js, Lawless PA, Yamamoto T, IEEE Trans. Plasma Sci., 19(6), 1152 (1991)
Nunez CM, Ramsey GH, Air Waste, 43, 242 (1993)
Yamamoto T, J. Electrost., 42, 227 (1997)
Rosocha LA, Korzekwa RA, J. Adv. Oxid. Technol., 4(3), 247 (1999)
Joshi SS, Trans. Faraday Soc., 23, 227 (1927)
Joshi SS, Trans. Faraday Soc., 25, 137 (1929)
Futamura S, Zhang A, Yamamoto T, IEEE Trans. Ind. Appl., 34(4), 760 (1999)
Hsiao MC, Merritt BT, Penetrante BM, J. Appl. Phys., 78(5), 3451 (1995)
Masuda S, "Destruction of Gaseous Pollutants and Air Toxics by Surface Discharge Induced Plasma Chemical Process(SPCP) and Pulse Corona Induced Plasma Chemical Process(PPCP)," NATO ASI Series G34 Part B, 199-209 (1993)
Yamamoto T, Lawless PA, "Decomposition of Volatile Organic Compounds by a Packed-Bed Reactor and a Pulsed-Corona Plasma Reactor," NATO ASI Series G34 Part B, 223-238 (1993)
Oda T, Takahashi T, Tada K, IEEE Trans. Ind. Appl., 35(2), 373 (1999)
Evans D, Rosocha LA, Anderson GK, Coogan JJ, J. Appl. Phys., 74(9), 5378 (1993)
Tonkyn RG, Barlow SE, Orlando TM, J. Appl. Phys., 80(9), 4877 (1996)
Chang MB, Chang CC, AIChE J., 43(5), 1325 (1997)
Oda T, Yamashita R, Takahashi T, Masuda S, IEEE Trans. Ind. Appl., 32(2), 227 (1996)
Oda T, Yamashita R, Haga I, Takahashi T, Masuda S, IEEE Trans. Ind. Appl., 32(1), 118 (1996)
Ogata A, Shintani N, Mizuno K, Yamamoto T, IEEE Trans. Ind. Appl., 35(4), 753 (1999)
Zhang R, Yamamoto T, Bundy DS, IEEE Trans. Ind. Appl., 32(1), 113 (1996)
Futamura S, Yamamoto T, IEEE Trans. Ind. Appl., 33(2), 447 (1997)
Futamura S, Zhang A, Prieto G, Yamamoto T, IEEE Trans. Ind. Appl., 34(5), 967 (1998)
Choi YS, Song YH, Kim SJ, Kim BU, HWAHAK KONGHAK, 38(3), 423 (2000)
Yamamoto T, Mizuno K, Tamori I, IEEE Trans. Ind. Appl., 32(1), 100 (1996)
Ogata A, Yamanouchi K, Mizuno K, Yamamoto T, IEEE Trans. Ind. Appl., 35(6), 1289 (1999)
Oda T, Takahashi T, Yamaji K, IEEE Trans. Ind. Appl., 38(3), 873 (2002)
Francke KP, Miessner H, Rudolph R, Plasma Chem. Plasma Process., 20(3), 393 (2000)
Feng R, Castle GSP, IEEE Trans. Ind. Appl., 34(3), 563 (1998)