Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
축열 촉매연소장치에서 휘발성 유기화합물의 소각특성
Incineration Characteristic of Volatile Organic Compound in the Regenerative Catalytic Oxidizer
Kwang Sup Song†
Yong Seog Seo
Nam Jo Jeong
Sang Phil Yu
In Soo Ryu
Sang Nan Lee
Jae Jin Choi1
Jin Do Jung1
한국에너지기술연구원 촉매연소연구센터, 305-343 대전시 유성구 장동 71-2 1호서대학교 환경공학과, 336-795 충남 아산시 배방면 세출리 산 29-1
Catalytic Combustion Research Center, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea 1Department of Environmental Engineering, Hoseo University, San 29-1 Sechul-ri, Baebang-myun, Asan, Chungnam 336-795, Korea
kssong@kier.re.kr
HWAHAK KONGHAK, June 2003, 41(3), 397-402(6), NONE
Download PDF
Abstract
높은 열 회수특성으로 인해 낮은 농도의 VOC를 소각처리 시키는데 매우 유용한 장치로 알려진 축열 촉매소각장치를 제작하고 특성실험을 수행하였다. 톨루엔의 농도가 150 ppm 이상인 모사 VOC 경우 보조 열을 공급하지 않아도 시스템을 안정적으로 운전할 수 있음을 확인하였고, 밸브가 전환될 때 미반응 톨루엔이 배출되지만 95% 정도의 높은 VOC 소각 처리 효율을 얻을 수 있었다. 축열 촉매소각장치의 운전에서 VOC의 처리효율은 유체의 흐름을 바꾸어주는 밸브의 전환주기, VOC 농도, 축열재의 양 등에 의해 결정되는데, 이들의 영향을 분석하였다.
Regenerative catalytic oxidizer(RCO) having high recovering efficiency of energy enables catalytic purification of polluted air containing a low content of volatile organic compounds(VOCs). From experimental study of the regenerative catalytic oxidizer, the VOC toluene concentration higher than 150 ppm can be handled without introduction of additional energy. The removal efficiency of VOC from the polluted air is around 95%. The influence of several operating parameters including cycle period, concentration of the VOC and mass of inert material(cordierite honeycomb) on the removal efficiency has also been examined.
References
Moretti EC, Mulkhopadhyay N, Chem. Eng. Prog., 89(7), 20 (1993)
Pfefferle LD, Pfefferle WC, Catal. Rev.-Sci. Eng., 29(2-3), 219 (1987)
Klvana D, Song KS, Kirchnerova J, Korean J. Chem. Eng., 19(6), 932 (2002)
Song KS, Kang SK, Kim SD, Catal. Lett., 49(1-2), 65 (1997)
Cho SJ, Ryoo MW, Soun KS, Lee JH, Kang SK, Korean J. Chem. Eng., 16(4), 478 (1999)
Matros YS, Chem. Eng. Sci., 45(8), 2097 (1990)
Matros YS, Bunimovich GA, Catal. Rev.-Sci. Eng., 38(1), 1 (1996)
Neophytides SG, Froment GF, Ind. Eng. Chem. Res., 31, 1583 (1992)
Blanks RF, Wittring TS, Peterson DA, Chem. Eng. Sci., 45(8), 2407 (1990)
Haynes TN, Georgakis C, Caram HS, Chem. Eng. Sci., 47(9-10), 2927 (1992)
Matros YS, Sulpher, 183, 23 (1986)
Eigenberger G, Nieken U, Int. Chem. Eng., 34(1), 4 (1994)
Vandebeld L, Westerterp KR, Can. J. Chem. Eng., 75(5), 975 (1997)
Hodnett BK, "Heterogeneous Catalytic Oxidation," John Wiley & Sons, Chichester, England (2000)
Haynes TN, Georgakis C, Caram HS, Chem. Eng. Sci., 50(3), 401 (1995)
Pfefferle LD, Pfefferle WC, Catal. Rev.-Sci. Eng., 29(2-3), 219 (1987)
Klvana D, Song KS, Kirchnerova J, Korean J. Chem. Eng., 19(6), 932 (2002)
Song KS, Kang SK, Kim SD, Catal. Lett., 49(1-2), 65 (1997)
Cho SJ, Ryoo MW, Soun KS, Lee JH, Kang SK, Korean J. Chem. Eng., 16(4), 478 (1999)
Matros YS, Chem. Eng. Sci., 45(8), 2097 (1990)
Matros YS, Bunimovich GA, Catal. Rev.-Sci. Eng., 38(1), 1 (1996)
Neophytides SG, Froment GF, Ind. Eng. Chem. Res., 31, 1583 (1992)
Blanks RF, Wittring TS, Peterson DA, Chem. Eng. Sci., 45(8), 2407 (1990)
Haynes TN, Georgakis C, Caram HS, Chem. Eng. Sci., 47(9-10), 2927 (1992)
Matros YS, Sulpher, 183, 23 (1986)
Eigenberger G, Nieken U, Int. Chem. Eng., 34(1), 4 (1994)
Vandebeld L, Westerterp KR, Can. J. Chem. Eng., 75(5), 975 (1997)
Hodnett BK, "Heterogeneous Catalytic Oxidation," John Wiley & Sons, Chichester, England (2000)
Haynes TN, Georgakis C, Caram HS, Chem. Eng. Sci., 50(3), 401 (1995)