ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

폴리페닐렌옥사이드/에폭시 수지 블렌드의 경화거동 및 파괴인성에서 폴리페닐렌옥사이드가 미치는 영향

Effect of Poly(phenylene oxide) on Cure Behavior and Fracture Toughness of Poly(phenylene oxide)/Epoxy Blends

한국화학연구원 화학소재연구부, 305-600 대전시 유성구 장동 100 1전북대학교 고분자공학과, 561-756 전북 전주시 덕진구 덕진동 1가 664-14
Advanced Materials Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea 1Department of Polymer Science and Engineering, Chonbuk National University, 664-14 1ga Duckjin-dong, Duckjin-gu, Jeonju, Jeonbuk 561-756, Korea
psjin@krict.re.kr
HWAHAK KONGHAK, August 2003, 41(4), 479-484(6), NONE
downloadDownload PDF

Abstract

본 실험에서는 4관능성 에폭시 수지(4EP)와 Poly (phenylene oxide) (PPO) 블렌드의 경화거동, 열 안정성 그리고 기계적 계면특성을 알아보았다. PPO의 조성비는 0, 5, 10, 15, 20 phr로 하였다. 4EP/PPO 블렌드물의 경화거동은 근적외선 분광법과 시차주사열량계를 통해 관찰하였고, 열 안정성은 열분해 개시온도(IDT), 열안정성 인자 그리고 적분 열분해 진행온도(IPDT)에 의해 관찰하였다. 시편의 기계적 계면특성을 고찰하기 위해서 파괴인성 실험을 수행하였고, 시편의 파괴단면을 주사전자현미경으로 분석하였다. 그 실험결과, 전화율은 5 phr에서 높은 값을 나타내었고, 경화 활성화 에너지(Ea)는 5 phr에서 PPO에 의해 경화가 가속화되어 감소되는 경향을 나타내었다. 열안정성은 분자내 PPO의 페닐그룹의 존재로 인해 PPO의 함량이 증가함에 따라 증가하였다. 또한 파괴인성 인자(KIC, GIC)는 5 phr에서 고분자 사슬 분자사이의 계면 결합력의 향상으로 인해 가장 높은 값을 나타내었다.
In this work, the effect of poly (phenylene oxide) (PPO) in tetrafunctional epoxy resin (4EP) was investigated in terms of cure kinetics, thermal properties, and mechanical interfacial properties of the blends. The content of PPO was varied within 0, 5, 10, 15, and 20 phr to neat 4EP. The cure kinetics of 4EP/PPO blend system are examined by near-IR and DSC measurements. And the thermal stabilities were determined by initial decomposed temperature (IDT), thermal stability factors, and integral procedural decomposition temperature (IPDT) of the blends. For the mechanical interfacial properties of the casting specimens, the fracture toughness test was performed, and their fractured surfaces were examined by SEM. As a result, the conversion_x000D_ (α) is indicated in high value at 5 phr of PPO and, the cure activation energy (Ea) is decreased at 5 phr PPO, due to the plasticized PPO polymer molecule in epoxy resins. The thermal stabilities were increased, which can be explained by the presence of phenyl group of PPO in intermolecular chains. Also the fracture toughness parameters (KIC, GIC) show high values at 5 phr PPO. This result is interpreted in the development of interfacial adhesion force between intermolecules of the polymer chains.

References

Ellis B, Chemistry and Technology of Epoxy Resins, Blackie Academic and Professional, Chapman and Hall, London (1993)
Finzel MC, Delong J, Hawley MC, J. Polym. Sci. A: Polym. Chem., 33(4), 673 (1995) 
May CA, Epoxy Resins: Chemistry and Technology, 2nd Ed., Marcel Dekker, New York (1988)
Park SJ, Park WB, Lee JR, Polym. J., 31(1), 28 (1999) 
Lee H, Nevile K, Handbook of Epoxy Resins, McGraw-Hill, New York (1967)
Musto P, Martuscelli E, Ragosta G, Mascia L, Polymer, 42(12), 5189 (2001) 
Lopez J, Ramirez C, Torres A, Abad MJ, Barral L, Cano J, Diez FJ, J. Appl. Polym. Sci., 83(1), 78 (2002) 
Japon S, Boogh L, Leterrier Y, Manson JAE, Polymer, 41(15), 5809 (2000) 
Moschior SM, Riccardi CC, Williams RJJ, Verchere D, Santerean H, Pascanit JP, J. Appl. Polym. Sci., 42(3), 717 (1991) 
Wu SJ, Lin TK, Shyu SS, J. Appl. Polym. Sci., 75(1), 26 (2000) 
Ochi M, Takahashi R, Terauchi A, Polymer, 42(12), 5151 (2001) 
Varley RJ, Hodgkin JH, Simon GP, Polymer, 42(8), 3847 (2001) 
Chang SS, Thermochim. Acta, 178(12), 195 (1991)
Mimura K, Ito H, Fujioka H, Polymer, 41(12), 4451 (2000) 
Fernandez B, Corcuera MA, Marieta C, Mondragon I, Eur. Polym. J., 37(9), 1863 (2001) 
Cho JB, Hwang JW, Cho K, An JH, Park CF, Polymer, 34(23), 4832 (1993) 
Liu WB, Kuo WF, Chiang CJ, Chang FC, Eur. Polym. J., 32(1), 91 (1996) 
Park SJ, Kwak GH, Sumita M, Lee JR, Polym. Eng. Sci., 40(12), 2569 (2000) 
Oh JH, Jang JS, Lee SH, Polymer, 42(20), 8339 (2001) 
Apicella A, Nicolais L, Nobile MR, Castiglione-Morelli MA, Compos. Sci. Technol., 24(2), 101 (1985) 
Barrett KE, J. Appl. Polym. Sci., 11(9), 1617 (1967) 
Osawa T, Bull. Chem. Soc. Jpn., 38(9), 1881 (1965) 
Kissinger HE, J. Res. Natl. Stand., 57(4), 217 (1956)
Ojeda T, Liberman S, Amorim R, Samios D, J. Polym. Eng., 16(112), 105 (1997)
Creton C, Halary JL, Monnerie L, Polymer, 40(1), 199 (1999) 
Doyle CD, J. Appl. Polym. Sci., 5(2), 285 (1961) 
Park SJ, Kim HC, J. Polym. Sci. B: Polym. Phys., 39(1), 121 (2001) 
Park SJ, Kim MH, Lee JR, Choi S, J. Colloid Interface Sci., 228(2), 287 (2000) 
Denograro FF, Llanoponte R, Mondragon I, Polymer, 37(9), 1589 (1996) 
Jordan C, Galy J, Pascault JP, J. Appl. Polym. Sci., 46(5), 859 (1992) 
Zheng SX, Wang JA, Guo QP, Wei J, Li JA, Polymer, 37(21), 4667 (1996) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로