Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
열분석법에 의한 수입 코우크스탄의 건류 반응열과 반응 특성 연구
Thermal Analysis Study on Kinetics and Heats of Carbonization Reaction for the Imported Coking Coals
경상대학교 화학공학과/공학연구원, 660-701 경남 진주시 가좌동900 1(재)포항산업과학연구원 광양연구소 제철공정연구팀, 545-090 전남 광양시 금호동 699
Department of Chemical Engineering/Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, Korea 1Iron & Steel making Process team, RIST at Kwangyang, 699 Kumho-dong, Kwangyang 545-090, Korea
HWAHAK KONGHAK, August 2003, 41(4), 530-536(7), NONE
Download PDF
Abstract
열중량분석(TGA)과 시차주사열량분석(DSC)을 이용한 석탄의 건류반응 실험을 하였고, 이들 반응의 kinetics와 반응열을 분석하였다. 사용한 석탄은 수입 역청탄으로 미국 Clintwood탄(CW), 호주 Goonyella탄(GY)과 중국 Tianchen탄(TH)이었다. 헬륨 가스 100 mL/min 분위기에서 가열속도 1-10 ℃/min 범위의 조건에서 상온에서 950 ℃까지 비등온 실험을 하였다. 건류반응 TGA 실험치 해석에는 미분법인 Kissinger, Freeman-Carroll, Chatterjee-Conrad법과 적분법을 적용하고, DSC 실험치 해석에는 Borchardt-Daniel법을 적용하였다. TGA 실험치 해석법으로는 Chatterjee-Conrad법이 가장 유효하였고, 건류반응 활성화에너지는 61.2-65.9 kJ/g-mol, 석탄량에 대한 반응차수는 0.92-1.29이었다. DSC의 반응열을 이용한 Borchardt-Daniel법의 경우 건류반응 활성화에너지가 39.5-56.0 kJ/g-mol, 반응차수는 0.98-1.05로 나타났다. 상온에서 1,000 ℃까지 건류에 필요한 열량은 CW탄 828 J/g, GY탄 823 J/g, TH탄 1,077 J/g으로 나타났다.
Carbonization reactions were studied experimentally in thermogravimetric analyzer (TGA) and differential scanning calorimeter (DSC), and the reaction kinetics obtained by serveral analysis methods were compared. The sample coals were U.S.A. Clintwood (CW), Australia Goonyella (GY), and China Tianchen (TH) bituminous coal. About 10-15 mg samples were nonisothermally heated from 30 ℃ to 950 ℃ in the flow of 100 mL/min He gas with various heating rates such as_x000D_
1 ℃/min, 3 ℃/min, 5 ℃/min, and 10 ℃/min. TGA data were analyzed by using the differential methods of Kissinger, Freeman-Carroll, and Chatterjee-Conrad method, and integral method. DSC data were also analyzed by using the Borchardt-Daniel method. The Chatterjee-Conrad method was the most effective method for the analysis of TGA carbonization data in these_x000D_
experimental conditions. Activation energies of carbonization reaction were calculated as 61.2-65.9 kJ/g-mol, and the reaction orders were 0.92-1.29. For the DSC data, the activation energies of carbonization reaction by using the Borchardt-Daniel method were 39.5-56.0 kJ/g-mol, and the reaction orders were 0.98-1.05. The carbonization heat requirement from a room temperature to 1,000 ℃ were 828 J/g(CWcoal), 823 J/g(GY coal), and 1,077 J/g(TH coal).
References
Bak YC, Son JE, HWAHAK KONGHAK, 25(6), 546 (1987)
Bak YC, Yang HS, Son JE, Energy R&D, 13(1), 85 (1991)
Lee GL, Bak YC, HWAHAK KONGHAK, 38(4), 541 (2000)
Bak YC, Yang HS, Son JE, HWAHAK KONGHAK, 29(3), 323 (1991)
Elving PJ, Kolthoff IM, Thermal Methods of Analysis, 2nd ed., John Wiley & Sons, N.Y. (1974)
Mahajan OP, Tomita A, Walker PL, Fuel, 55, 63 (1976)
Janikowski S, Stenberg VI, Fuel, 68, 95 (1989)
Yun Y, Suuberg EM, Fuel, 72, 1245 (1993)
Hefta RS, Schobert HH, Kube WR, Fuel, 65, 1196 (1986)
Lopez-Peinado AJ, Tromp PJJ, Moulijn JA, Fuel, 68, 999 (1989)
Tromp PJJ, Kapteijn F, Moulijn JA, Fuel Process. Technol., 15, 45 (1987)
Wen CY, Bailie RC, Lin CY, O'Brien WS, "Coal Gasification," Adv. in Chemistry Series 131, Ame. Chem. Socie., Washington, 9 (1974)
TA Instruments, A Review of DSC Kinetics Methods, TA-073, in Thermal Analysis Technical Literature (1994)
Anthony DB, Howard JB, AIChE J., 22, 625 (1976)
Kissinger HE, Anal. Chem., 21, 1702 (1987)
Freeman ES, Carroll B, J. Phys. Chem., 62, 394 (1958)
Chatterjee PK, Conrad CM, J. Polym. Sci. A: Polym. Chem., 6, 3217 (1968)
Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25, 160 (1985)
Bak YC, Yang HS, Son JE, Energy R&D, 13(1), 85 (1991)
Lee GL, Bak YC, HWAHAK KONGHAK, 38(4), 541 (2000)
Bak YC, Yang HS, Son JE, HWAHAK KONGHAK, 29(3), 323 (1991)
Elving PJ, Kolthoff IM, Thermal Methods of Analysis, 2nd ed., John Wiley & Sons, N.Y. (1974)
Mahajan OP, Tomita A, Walker PL, Fuel, 55, 63 (1976)
Janikowski S, Stenberg VI, Fuel, 68, 95 (1989)
Yun Y, Suuberg EM, Fuel, 72, 1245 (1993)
Hefta RS, Schobert HH, Kube WR, Fuel, 65, 1196 (1986)
Lopez-Peinado AJ, Tromp PJJ, Moulijn JA, Fuel, 68, 999 (1989)
Tromp PJJ, Kapteijn F, Moulijn JA, Fuel Process. Technol., 15, 45 (1987)
Wen CY, Bailie RC, Lin CY, O'Brien WS, "Coal Gasification," Adv. in Chemistry Series 131, Ame. Chem. Socie., Washington, 9 (1974)
TA Instruments, A Review of DSC Kinetics Methods, TA-073, in Thermal Analysis Technical Literature (1994)
Anthony DB, Howard JB, AIChE J., 22, 625 (1976)
Kissinger HE, Anal. Chem., 21, 1702 (1987)
Freeman ES, Carroll B, J. Phys. Chem., 62, 394 (1958)
Chatterjee PK, Conrad CM, J. Polym. Sci. A: Polym. Chem., 6, 3217 (1968)
Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25, 160 (1985)