Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
에틸렌디아민을 이용하여 Solvothermal Synthesis로 Y2O3: Eu3+ 나노 입자의 제조
Preparation of Y2O3: Eu3+ Nanoparticles with the Solvothermal Synthesis using Ehtylenediamine
단국대학교 공업화학과, 330-714 충남 천안시 안서동 산29-1
Department of Industrial Chemistry, Dankook University, San 29, Anseo-dong, Cheonan 330-714, Korea
thcho@dankook.ac.kr
HWAHAK KONGHAK, October 2003, 41(5), 638-642(5), NONE
Download PDF
Abstract
에틸렌디아민을 용매로 하여 용매열합성으로 200 ℃에서 1-5시간 반응시킨 후 1,000 ℃에서 1,4000 ℃로 2-4시간 동안 대기중에서 열처리 과정으로 Eu가 도핑 된 Y2O3 나노 입자를 제조하였다. 1,000 ℃에서 2시간 동안 열처리한 결정의 X선 회절패턴은 보고 된 데이터(JCPDS 카드파일 41-1105, a=10.60418 Å)와 거의 일치하는 격자상수 a=10.6029 Å인 순수한 큐빅상의 Y2O3을 나타내었다. 제조된 형광체의 평균입자 크기는 대략 100 nm로 구형의 형태를 가진다. 열처리 온도가 증가함에 따라 형광체 입자의 크기가 감소하였으며, 또한 형광체의 발광 세기가 증가하였다. PL 스펙트럼 분석 결과, Eu의 농도가 3% 도핑 된 Y2-xO3:Eux3+(x=0.06)형광체는 250 nm파장에서 여기 스펙트럼을 나타내었고, 611 nm파장에서 주발광 스펙트럼을 나타내었다.
Eu doped Y2O3 nanoparticles were prepared with the solvothermal synthesis using ethylenediamine solvent at 200 ℃ for 1-5 h and then annealed in air at from 1,000 ℃ to 1,400 for 2-4 h. The X-ray diffraction pattern of the crystals annealed at 1,000 ℃ for 2 h could be indexed as pure cubic cell of Y2O3 with the lattice parameter a=10.6029 Å which is very close to the reported value (JCPDS Card File 41-1105, a=10.6041 Å). Average sizes of prepared phosphor particles had about 100 nm, size and spherical morphology. The phosphor particle size decreased and the emission intensity increased as the annealing temperature increased. Through PL spectrum analysis, the 3% Eu doped Y2-xO3:Eux3+(x=0.06) phosphor showed the excitation spectrum at 250 nm wavelength and the maximum emission spectrum appeared at 611nm wavelength.
References
Gupta CK, Krishnamurthy N, Int. Rev., 37(5), 197 (1992)
Kang YC, Roy HS, Park SB, Adv. Mater., 12, 451 (2000)
Bhargava RN, Gallagher D, Hong X, Nurmikio A, Phys. Rev. Lett., 72(3), 416 (1994)
Vecht A, Jing X, Gibbons C, Ireland T, Davies D, Marsh P, Newport A, SDI Tech. Dig., 29, 1043 (1998)
Baek JS, Yu SC, Lim WY, Kim CS, Kim TS, Kim CO, J. Appl. Phys., 83(10), 5404 (1998)
Hadjipanayis GC, Siegel RW, Nanophase Materials: Synthesis-Properties - Applications; NATOASI Series E., 260, (Kluwer, Dordrecht) (1993)
Kim CH, Il EKC, Park H, Hwang YJ, Bae HS, Yu BY, Pyun CH, Hong GY, J. Alloy. Compd., 311(1), 33 (2000)
Goldburt ET, Kulkarni B, Bhargava RN, Taylor J, Libera M, J. Lumin., 72-74, 1 (1997)
Kang YC, Roh HS, Seo DJ, Park SB, J. Mater. Sci. Lett., 19(14), 1225 (2000)
Dhanaraj J, Jagannathan R, Kutty TRN, Lu CH, J. Phys. Chem. B, 105(45), 11098 (2001)
Marinez-Rubio MI, Ireland TG, Silver J, Fren G, Gibbons C, Vecht A, Electrochem. Solid. State Lett., 3(9), 446 (2000)
Sun L, Qian C, Liao C, Wang X, Yan C, Solid State Commun., 119, 393 (2001)
Roh HS, Kang YC, Park SB, HWAHAK KONGHAK, 39(2), 195 (2001)
Roh HS, Kang YC, Park SB, HWAHAK KONGHAK, 38(2), 255 (2000)
Li Q, Ding Y, Wu H, Liu X, Qian Y, Mater. Res. Bull., 37, 925 (2002)
Hai B, Tang K, Wang C, An C, Yang Q, Shen G, Qian Y, J. Cryst. Growth, 225, 92 (2001)
Li B, Xie Y, Su HL, Qian YT, Liu XM, Solid State Ion., 120(1-4), 251 (1999)
Li Y, Liao H, Fan Y, Li L, Qian Y, Mater. Chem. Phys., 58, 87 (1999)
Han ZH, Li YP, Zhao HQ, Yu SH, Yin XL, Qian YT, Mater. Lett., 44(6), 366 (2000)
An C, Tang K, Shen G, Wang C, Yang G, Hai B, Qian YT, J. Cryst. Growth, 244, 333 (2002)
Qiao ZP, Xie G, Tao J, Nie ZY, Lin YZ, Chen XC, J. Solid State Chem., 166, 49 (2002)
Han ZH, Li YP, Zhao HQ, Yu SH, Yin XL, Qian YT, Mater. Lett., 44, 366 (2001)
Joint Committee for Powder Diffraction Standards, JCPDS Card No. 411105 (Joint Committee for Powder Diffraction Standards, Swarthmore, Pennsylvania) (1991)
Hong GY, Jeon BS, Yoo YK, Yoo JS, J. Electrochem. Soc., 148(11), H161 (2001)
Xie Y, Su HL, Qian XF, Liu XM, Qian YT, J. Solid State Chem., 149(1), 88 (2000)
Kim CH, Kwon IE, Park CH, Hwang YJ, Bae HS, Yu BY, Pyun CH, Hong GY, J. Alloy. Compd., 311, 33 (2000)
Blasse G, Grabmaier BC, "Luminescent Materials," p. 16, 41 Springer-Verlag, New York (1994)
Silver J, Martinez-Rubio MI, Ireland TG, Fern GR, Withnall R, J. Phys. Chem. B, 105(38), 9107 (2001)
Zhang J, Tang Z, Zhang Z, Fu W, Wing J, Lin Y, Mater. Sci. Eng., 334(1-2), 246 (2002)
Kang YC, Roy HS, Park SB, Adv. Mater., 12, 451 (2000)
Bhargava RN, Gallagher D, Hong X, Nurmikio A, Phys. Rev. Lett., 72(3), 416 (1994)
Vecht A, Jing X, Gibbons C, Ireland T, Davies D, Marsh P, Newport A, SDI Tech. Dig., 29, 1043 (1998)
Baek JS, Yu SC, Lim WY, Kim CS, Kim TS, Kim CO, J. Appl. Phys., 83(10), 5404 (1998)
Hadjipanayis GC, Siegel RW, Nanophase Materials: Synthesis-Properties - Applications; NATOASI Series E., 260, (Kluwer, Dordrecht) (1993)
Kim CH, Il EKC, Park H, Hwang YJ, Bae HS, Yu BY, Pyun CH, Hong GY, J. Alloy. Compd., 311(1), 33 (2000)
Goldburt ET, Kulkarni B, Bhargava RN, Taylor J, Libera M, J. Lumin., 72-74, 1 (1997)
Kang YC, Roh HS, Seo DJ, Park SB, J. Mater. Sci. Lett., 19(14), 1225 (2000)
Dhanaraj J, Jagannathan R, Kutty TRN, Lu CH, J. Phys. Chem. B, 105(45), 11098 (2001)
Marinez-Rubio MI, Ireland TG, Silver J, Fren G, Gibbons C, Vecht A, Electrochem. Solid. State Lett., 3(9), 446 (2000)
Sun L, Qian C, Liao C, Wang X, Yan C, Solid State Commun., 119, 393 (2001)
Roh HS, Kang YC, Park SB, HWAHAK KONGHAK, 39(2), 195 (2001)
Roh HS, Kang YC, Park SB, HWAHAK KONGHAK, 38(2), 255 (2000)
Li Q, Ding Y, Wu H, Liu X, Qian Y, Mater. Res. Bull., 37, 925 (2002)
Hai B, Tang K, Wang C, An C, Yang Q, Shen G, Qian Y, J. Cryst. Growth, 225, 92 (2001)
Li B, Xie Y, Su HL, Qian YT, Liu XM, Solid State Ion., 120(1-4), 251 (1999)
Li Y, Liao H, Fan Y, Li L, Qian Y, Mater. Chem. Phys., 58, 87 (1999)
Han ZH, Li YP, Zhao HQ, Yu SH, Yin XL, Qian YT, Mater. Lett., 44(6), 366 (2000)
An C, Tang K, Shen G, Wang C, Yang G, Hai B, Qian YT, J. Cryst. Growth, 244, 333 (2002)
Qiao ZP, Xie G, Tao J, Nie ZY, Lin YZ, Chen XC, J. Solid State Chem., 166, 49 (2002)
Han ZH, Li YP, Zhao HQ, Yu SH, Yin XL, Qian YT, Mater. Lett., 44, 366 (2001)
Joint Committee for Powder Diffraction Standards, JCPDS Card No. 411105 (Joint Committee for Powder Diffraction Standards, Swarthmore, Pennsylvania) (1991)
Hong GY, Jeon BS, Yoo YK, Yoo JS, J. Electrochem. Soc., 148(11), H161 (2001)
Xie Y, Su HL, Qian XF, Liu XM, Qian YT, J. Solid State Chem., 149(1), 88 (2000)
Kim CH, Kwon IE, Park CH, Hwang YJ, Bae HS, Yu BY, Pyun CH, Hong GY, J. Alloy. Compd., 311, 33 (2000)
Blasse G, Grabmaier BC, "Luminescent Materials," p. 16, 41 Springer-Verlag, New York (1994)
Silver J, Martinez-Rubio MI, Ireland TG, Fern GR, Withnall R, J. Phys. Chem. B, 105(38), 9107 (2001)
Zhang J, Tang Z, Zhang Z, Fu W, Wing J, Lin Y, Mater. Sci. Eng., 334(1-2), 246 (2002)