Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 22, 2003
Accepted November 28, 2003
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
대기압 플라즈마 처리를 통한 PU-g-PAAc Foam의 제조
Preparation of PU-g-PAAc Foams through One Atmospheric Pressure Plasma Treatment
충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220
Department of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-Gu, Daejeon 305-764, Korea
hchoi@cnu.ac.kr
Korean Chemical Engineering Research, February 2004, 42(1), 89-95(7), NONE Epub 22 April 2004
Abstract
대기압 플라즈마 처리 및 AAc 그라프팅을 통해 PU foam(10 PPI)의 표면을 개질 하였다. 대기압 플라즈마 처리로 PU foam의 표면에 peroxides를 충분히 생성시킨 후 AAc 액상 그라프팅 반응으로 carboxyl group을 갖는 PU foam을 제조하였다. Pu form에 많은 양의 peroxides를 도입하기 위해 플라즈마 rf-power와 처리 시간을 조절하여 AAc 그라프팅을 통한 GD의 변화로 최적 조건을 조사하였다. 대기압 플라즈마 반응기의 최적 조건은 GD의 변화를 통해 rf-power 100W, 처리시간 100초임을 알 수 있었다. 다음으로 다양한 그라프팅 조건(온도, 농도, 반응시간)에 따른 GD의 변화를 살펴보았다. GD는 온도가 올라감에 따라 대체적으로 증가하였고, 반응 시간이 증가함에 따라서는 3시간까지 증가하다가 그 후로는 일정한 값을 나타내었다. 또한 저 농도의 AAc에서는 GD가 상당히 낮았으며, 60-70%의 농도에서 최대값을 나타내었다. 개질된 PU foam의 carboxyl group들은 FT-IR을 이용하여 정성적으로 확인하였고, 정량적인 분석으로는 무게측정법을 사용하였다. 또한 근접촬영사진을 통해 그라프팅 반응 전후에 나타난 PU foam 표면의 구조 변화를 살펴보았다. 끝으로, 난백에 있는 단백질과 Lysozyme을 PU foam 표면에 고정화시켜 이온교환수지로서의 가능성 여부를 평가하였다.
We successfully modified the surface of PU (Polyurethane) foam (10 PPI) through atmospheric pressure plasma treatment and subsequent grafting of AAc (acrylic acid). The plasma treatment can generate large amount of peroxides on the surface of PU foam and the peroxide groups act as initiators for further grafting of AAc in the monomer solution. To introduce large amount of peroxides on the surface of PU foam, we studied the effect of plasma rf-power and treatment time on the maximum grafting of AAc. Through this study, we found that the optimum rf-power was 100 W and the optimum treatment time was 100 sec. On the other hand, we also studied the effect of graft reaction conditions such as temperature, monomer concentration and reaction time on the change of grafting degree (GD). The GD increased with temperature and increased with reaction time before it leveled off at 3 hr after reaction. At low concentration of AAc, the GD was very low but it showed the maximum at the monomer concentration between 60% and 70%. The surface of the modified PU foam was qualitatively and quantitatively analyzed with FT-IR and by weight measurement, respectively. We also observed the surface change before and after plasma induced graft co-polymerization through photo and SEM analysis. Finally, we confirmed the immobilization of Lysozyme through the electrophoresis analysis of proteins, which were recovered by the PU-g-PAAc foam from egg white.
References
Pochner K, Neff W, Lebert R, Surf. Coat. Technol., 74-75, 394 (1995)
Azzuoli G, Barbucci R, Benvenuti M, Ferruti P, Nocentini M, Biomaterials, 8, 61 (1987)
Choi MS, Kang IK, Kim KH, Lee YM, Sung YK, Polym.(Korea), 21(5), 709 (1997)
Lamba NMK, Woodhouse KA, Cooper SL, "Polyurethanes in Biomedical Applications," CRC Press, Boca Raton (1998)
Byun KH, Kang IK, Lim HS, Lee JH, Lee HB, Polym.(Korea), 17(2), 186 (1993)
Kang IK, Kwon OH, Kim MK, Lee YM, Sung YK, Biomaterials, 18, 1099 (1997)
Kim EJ, Kang IK, Jang MK, Park YB, Biomaterials, 19, 239 (1998)
Kim EJ, Kim JM, Cho UR, Lim HS, Kang IK, Polym.(Korea), 20(3), 514 (1996)
Braun T, Bekeffy O, Haklits I, Kadar K, Majoros G, Anal. Chim. Acta, 64, 45 (1973)
Lei J, Liao X, Eur. Polym. J., 37, 771 (2001)
Lee YM, Shim JK, J. Polym. Sci., 61, 1245 (1996)
Zhang Y, Myung SW, Choi HS, Kim IH, Choi JH, J. Ind. Eng. Chem., 8(3), 236 (2002)
Kim YS, Kwon OJ, Kim EH, Myung SW, Choi HS, HWAHAK KONGHAK, 41(2), 224 (2003)
Xu ZK, Wang JL, Shen LQ, Men DF, Xu YY, J. Membr. Sci., 196(2), 221 (2002)
Lu J, Li J, Ha H, Radiat. Phys. Chem., 60, 625 (2001)
Matsumoto A, Mitomi D, Aota H, Ikeda J, Polymer, 41(4), 1321 (2000)
Aliev R, Garcia P, Burillo G, Radiat. Phys. Chem., 58, 299 (2000)
Park SJ, Jin JS, J. Korean Ind. Eng. Chem., 11(7), 762 (2000)
Kim YB, Jung BO, Kim KS, Kang YS, Kim KH, Polym.(Korea), 12(8), 678 (1988)
Kim MJ, Seo ED, Polym.(Korea), 26(2), 279 (2002)
Kim WK, Chung BH, J. Microbiol. Biotechnol., 9, 292 (1999)
Chiang BH, Su CK, Tsai GJ, Tsao GT, J. Food Sci., 58, 302 (1993)
Azzuoli G, Barbucci R, Benvenuti M, Ferruti P, Nocentini M, Biomaterials, 8, 61 (1987)
Choi MS, Kang IK, Kim KH, Lee YM, Sung YK, Polym.(Korea), 21(5), 709 (1997)
Lamba NMK, Woodhouse KA, Cooper SL, "Polyurethanes in Biomedical Applications," CRC Press, Boca Raton (1998)
Byun KH, Kang IK, Lim HS, Lee JH, Lee HB, Polym.(Korea), 17(2), 186 (1993)
Kang IK, Kwon OH, Kim MK, Lee YM, Sung YK, Biomaterials, 18, 1099 (1997)
Kim EJ, Kang IK, Jang MK, Park YB, Biomaterials, 19, 239 (1998)
Kim EJ, Kim JM, Cho UR, Lim HS, Kang IK, Polym.(Korea), 20(3), 514 (1996)
Braun T, Bekeffy O, Haklits I, Kadar K, Majoros G, Anal. Chim. Acta, 64, 45 (1973)
Lei J, Liao X, Eur. Polym. J., 37, 771 (2001)
Lee YM, Shim JK, J. Polym. Sci., 61, 1245 (1996)
Zhang Y, Myung SW, Choi HS, Kim IH, Choi JH, J. Ind. Eng. Chem., 8(3), 236 (2002)
Kim YS, Kwon OJ, Kim EH, Myung SW, Choi HS, HWAHAK KONGHAK, 41(2), 224 (2003)
Xu ZK, Wang JL, Shen LQ, Men DF, Xu YY, J. Membr. Sci., 196(2), 221 (2002)
Lu J, Li J, Ha H, Radiat. Phys. Chem., 60, 625 (2001)
Matsumoto A, Mitomi D, Aota H, Ikeda J, Polymer, 41(4), 1321 (2000)
Aliev R, Garcia P, Burillo G, Radiat. Phys. Chem., 58, 299 (2000)
Park SJ, Jin JS, J. Korean Ind. Eng. Chem., 11(7), 762 (2000)
Kim YB, Jung BO, Kim KS, Kang YS, Kim KH, Polym.(Korea), 12(8), 678 (1988)
Kim MJ, Seo ED, Polym.(Korea), 26(2), 279 (2002)
Kim WK, Chung BH, J. Microbiol. Biotechnol., 9, 292 (1999)
Chiang BH, Su CK, Tsai GJ, Tsao GT, J. Food Sci., 58, 302 (1993)