ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 1, 2003
Accepted January 6, 2004
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

구리첨착 ACF에 의한 NO의 분해

Decomposition of NO by Cu-impregnated ACFs

충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220 1국방과학연구소, 305-600 대전시 유성구 유성우체국 사서함 35-1
Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea 1Agency for Defence Development, P.O Bax 35-1, Yuseong-gu, Daejeon 305-600, Korea
Korean Chemical Engineering Research, April 2004, 42(2), 196-201(6), NONE Epub 14 May 2004

Abstract

레이욘계 활성탄소섬유(KF-1500)에 구리를 첨착하고 반응관에 충전한 후 300-400 ℃에서 NO가스를 통과시키면서 촉매분해시켰다. NO가스의 주입농도는 1,300 ppm이다. 구리를 첨착하지 않았을 때는 NO가스를 거의 흡착하지 않았으나 구리를 5혹은 10 wt% 첨착시킨 활성탄소섬유는 400 ℃에서는 6시간 이상 200 ppm미만의 NO 농도를 유지하면서 효과적으로 분해시켰다. 구리는 활성탄소섬유의 미세공 입구 탄소에 첨착되며, 활성탄소섬유에 첨착된 구리 [ACF-C(Cu)]는 반응의 초기에는 [ACF-C(Cu2O)]가 되면서 NO를 N2로 환원시켰다. [ACF-C(Cu2O)]도 NO를 환원시켜 N2를 발생시키면서 [ACF-C(CuO)]가 되었다. 이러한 반응이 진행되는 동안 활성탄소섬유의 질량은 거의 변함이 없었으므로 첨착된 구리가 촉매로 작용하였다고 판단되며, 촉매 환원의 반응온도가 높을수록 가속되었다.
NO gas was decomposed by Cu-impregnated rayon based ACF in a column reactor at 300-400 ℃ in helium surrounding. Initial NO concentration was 1,300 ppm. The as received ACF adsorbed NO very little. However, NO was effectively decomposed by 5-10 wt% Cu-impregnated ACF a t 400 ℃. The concentration of NO was maintained less than 200 ppm for 6 hours in this system. Copper was impregnated at the entrance of micropores. Impregnation of Cu particles on ACF should be homogeneously distributed to increase the capacity of catalytic reduction of NO. The Cu-impregnated ACF-C(Cu) deoxydized NO to N2 and was reduced to ACF-C(Cu2O) in the initial stage. The ACF-C(Cu2O) also deoxidized NO to N2 and was reduced to ACF-C(CuO). There was little consumption of ACF in mass during the catalytic reduction of NO to N2 by copper. The catalytic reduction was accerelated by increasing the reaction temperature.

References

Gray PG, Do DD, Chem. Eng. Commun., 117, 219 (1992)
Takeuchi Y, Yanagisawa K, Tanaka Y, Tsuruoka N, Korean J. Chem. Eng., 14(5), 377 (1997)
Ham SW, Nam IS, Kim YG, Korean J. Chem. Eng., 17(3), 318 (2000)
Kim MH, Nam IS, Kim YG, Korean J. Chem. Eng., 16(1), 139 (1999)
Chan LK, Sarofim AF, Beer JM, Combust. Flame, 52, 37 (1983) 
Rodriguez-Mirasol J, Pels JR, Kapteijn F, Moulijn JA, "NO and N2O Decomposition on Activated Carbon," Extended Abstract, Carbon '95, San Diego, 620-621 (1995)
Illan-Gomez MJ, Raymundo-Pinero E, Garcia-Garcia A, Linares-Solano A, de Lecea CSM, Appl. Catal. B: Environ., 20(4), 267 (1999) 
Illan-Gomez MJ, Linares-Solano A, de Lecea CSM, "NO Reduction by Activated Carbon-Catalysis by Transition Metals," Extended Abstract, Carbon '95, San Diego, 624-625 (1995)
Ryu SK, High Temp-High Pressure, 22, 345 (1990)
Mark PC, Susan ML, Mark JR, Environ. Prog., 13, 26 (1994)
Kaneko K, Ozeki S, Inouye K, Atmospheric Environ., 21(9), 2053 (1987) 
Imai J, Suzuki T, Kaneko K, Catal. Lett., 20, 133 (1993) 
Fu RW, "Studies on the Catalytic Reaction of Nitrogen Oxide on Metal Modified ACF," Extended Abstract, Carbon '01, Kentucky, 43-44 (2001)
Mochida I, Kishino M, Kawano S, Sakanishi K, Kori Y, Yasutake A, Yoshikawa M, Fuel, 77(15), 1741 (1998) 
Park SJ, Jang YS, "NO Removal Mechanism of ACF/Cu Catalyst by Electro-Copper Plating," Extended Abstract, The 3rd Conf. on Carbon Materials and Science (Korea), Sept. 13-14, Seoguipo, Jeju, 55-56 (2002)
Park BJ, Park SJ, Ryu SK, J. Colloid Interface Sci., 217(1), 142 (1999) 
Kutics K, Suzuki M, "Adsorption of Organics on Surface Modified Activated Carbon Fibers," The 2nd Korea-Japan Symposium on Separation Technology, June 1-2, Seoul, 395-398 (1990)
Gregg SJ, Sing KSW, "Adsorption, Surface area, and Porosity," 2nd edi., Academic Press, Inc., London (1982)
Ryu SK, Kim SY, Gallego N, Edie DD, Carbon, 37, 1619 (1999) 
Marquez-Alvarez CM, Rodriguez-Ramos I, Guerrero-Ruiz A, Carbon, 34(3), 339 (1996) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로