ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 7, 2003
Accepted February 10, 2004
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

초임계유체를 이용한 다양한 형상의 고분자 미분말 제조

Preparation of Polymeric Fine Particles with Various Morphologies using Supercritical Fluid

울산대학교 공과대학 생명화학공학부, 680-749 울산시 남구 무거2동 산 29
School of Chemical Engineering and Bio Engineering, University of Ulsan, San 29, Muger 2-dong, Nam-gu, Ulsan 680-749, Korea
swkim@uou.ulsan.ac.kr
Korean Chemical Engineering Research, April 2004, 42(2), 202-212(11), NONE Epub 14 May 2004

Abstract

초임계유체를 anti-solvent로 이용하여 고분자물질인 PS(polystyrene), PMMA(poly (methyl methacrylate)) 및 PLGA(poly(DL-lactide-co-glycolide))의 미분말을 제조하고 입자 크기와 형상(morphology)의 변화를 알아보고자 하였는데 온도, 밀도, 농도, 선속도의 비 등 여러 가지 변수를 변화시키면서 실험을 수행하였다. PS의 경우 미분말 및 다양한 형상을 갖는 물질들을 제조하였을 뿐 만 아니라 일정 부피의 PS 용액에 고압의 CO2를 주입하는 방법을 사용하여 기공 크기가 2-10 μm의 분포를 가지고 있는 구형의 다공성 PS 미분말을 성공적으로 제조할 수 있었다. 다공성 PS 미분말 제조 실험에서 co-solute의 개념을 새롭게 시도하였는데 이러한 방법은 앞으로 다공성 고분자 입자의 제조에 일반적으로 사용될 수 있는 가능성이 있다. PMMA의 경우도 온도, 밀도, 농도, 선속도의 비 및 고분자 용액의 농도를 변화시키면서 실험을 수행하였다. PMMA는 flocculation과 agglomeration문제가 심하기 때문에 이를 해결하기 위한 한가지 방법으로 메탄올을 co-antisolvent로 도입함으로써 agglomeration이 크게 감소된 미분말 PMMA를 얻을 수 있었다. 생분해성 고분자의 일종인 PLGA의 미분말을 제조하기 위하여 초임계유체를 anti-solvent로 사용하는 3가지 방법을 고찰하였는데 다양한 실험 조건에서도 거의 동일하게 약간 flocculation이 일어난 50-100 nm의 아주 작은 기공이 없는 입자를 얻었다. 그런데 PLGA를 acetone/methanol(6:4)용액에 용해시킨 PLGA용액을 사용한 결과 망상구조의 도포된 형태를 얻을 수 있었는데 망상구조의 기공 크기는 대략 0.5-1.0 μm의 균일한 구조를 이루고 있었다. 이와 같은 특이한 구조를 갖는 물질들은 앞으로 지연방출(controlled release)이나 막분리와 같은 다양한 분야에 활용될 가능성이 아주 크다고 할 수 있다.
To prepare fine particles of PS(polystyrene), PMMA(poly (methyl methacrylate)) and PLGA(poly(DL-lactide-coglycolide)) by utilizing supercritical fluid as an anti-solvent, the experiments have been conducted at various temperatures, densities, concentrations and the ratios of linear velocity. The PS fine particles with various morphologies which include porous spherical fine particles with 2-10 μm pores have been prepared successfully. In the experiments for preparing porous PS particles a new concept of co-solute has been introduced, which might be utilized as an alternative method to produce porous polymer particles. In the case of PMMA the experiments have been performed by changing temperature, density, concentration, the ratio of linear velocity and the concentration of polymer solution. Since the flocculation and agglomeration are severe for PMMA, a new concept called co-antisolvent has been devised. The PMMA fine particles, which reduce flocculation greatly, have been produced by utilizing methanol as a co-antisolvent. In order to prepare fine particles of biodegradable PLGA all of the three injecting methodologies have been investigated. The nonporous particles, which have a little flocculation and sizes in the range of 50-100 nm, have been produced even at different experimental conditions. When the solvent dissolving PLGA has been changed to acetone/methanol(6:4), the coated network structure, which shows regular 0.5-1.0 μm pores, has been obtained. This network structure has a great potential to be utilized in the fields of controlled release and membrane separation technology.

References

Thiering R, Dehghani F, Foster NR, J. Supercrit. Fluids, 21, 159 (2001) 
Jung J, Perrut M, J. Supercrit. Fluids, 20, 179 (2001) 
Lee YW, HWAHAK KONGHAK, 41(6), 679 (2003)
Song KH, Lee CH, Lim JS, Lee YW, Korean J. Chem. Eng., 19(1), 139 (2002)
Dixon DJ, Johnston KP, Bodmeier RA, AIChE J., 39(1), 127 (1993) 
Lunabarcenas G, Kanakia SK, Sanchez IC, Johnston KP, Polymer, 36(16), 3173 (1995) 
Reverchon E, DeMarco I, DellaPorta G, J. Supercrit. Fluids, 23, 81 (2002) 
Reverchon E, DellaPorta G, DeRosa I, Subra P, Letourneur D, J. Supercrit. Fluids, 18, 239 (2000) 
Taki S, Badens E, Charbit G, J. Supercrit. Fluids, 21, 61 (2001) 
Han SJ, Lohse DJ, Radosz M, Sperling LH, J. Appl. Polym. Sci., 77(7), 1478 (2000) 
Matson DW, Peterson RC, Smith RD, J. Mater. Sci., 22, 1919 (1987) 
Gallagher PM, Coffey MP, Krukonis VJ, Klasutis N, ACS Symp. Ser., 406, 334 (1989)
Johnston KP, Luna-Barcenas G, Dixon D, Mawson S, "Polymeric Materials by Precipitation with a Compressed Fluid Anti-solvent," Proceedings of the 3rd Int. Symp. on Supercrit. Fluids, 223-228 (1994)
Jaarmo S, Rantakyla M, Aaltonen O, "Particle Tailoring with Supercritical Fluids: Production of Amorphous Pharmaceutical Particles," Proceedings of the 4th Int. Symp. on Supercrit. Fluids, 263-266 (1997)
Hanna M, York P, Shekunov BY, "Control of the Polymeric Forms of a Drug Substance by Solution Enhanced Dispersion by Supercritical Fluids (SEDS)," Proceedings of the 5th Meeting on Supercrit. Fluids, 325-300 (1998)
Dixon DJ, Johnston KP, AIChE J., 37(10), 1441 (1991) 
Yeo SD, Lim BG, Debenedetti PG, Bernstein H, Biotechnol. Bioeng., 41, 341 (1993) 
Bleich J, Kleinebudde P, Muller BW, Int. J. Pharm., 106, 77 (1994) 
Schmitt WJ, Salada MC, Shook GG, Speaker SM, AIChE J., 41(11), 2476 (1995) 
Kim YS, Kim IC, Kim S, HWAHAK KONGHAK, 38(2), 210 (2000)
Ghaderi R, Artursson P, Carlfors J, Pharm. Res., 16(5), 676 (1999) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로