Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 17, 2003
Accepted February 10, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
초임계유체에 용해된 염료의 폴리에스터 섬유에 대한 염착
Dye Uptake of Polyester Fiber in Supercritical Fluids
LG 마이크론(주), 730-713 경북 구미시 구포동 624 1호남석유화학(주), 555-805 전남 여수시 중흥동 172 2대구도시가스(주), 703-833 대구시 서구 중리동 1023 3영남대학교 공과대학 응용화학공학부, 712-749 경북 경산시 대동 214-1
LG Micron Ltd., 624, Gupo-dong, Gumi, Kyungbuk 730-713, Korea 1Honam Petrochemical Corp., 172, Joongheung-dong, Yeosu, Chonnam 555-805, Korea 2Daegu City Gas Co., 1023, Jungri-dong, Seo-gu, Daegu 703-833, Korea 3School of Chemical Engineering and Technology, Yeungnam University, 214-1, Dae-dong, Kyongsan, Kyungbuk 712-749, Korea
Korean Chemical Engineering Research, April 2004, 42(2), 213-216(4), NONE Epub 14 May 2004
Abstract
반유통형의 초임계유체 염색장치를 사용하여 333.2 K, 373.2 K, 413.2 K의 일정온도와 150 bar-300 bar의 압력에서 이산화탄소에 분산염료를 용해하여 폴리에스터 직물을 염색하고 염색시간에 따른 염착량을 측정하였다. 같은 방법으로 HFC-134a를 사용하여 383.2 K와 413.2 K의 일정온도와 50 bar-160 bar의 압력에서 염료를 용해하여 염색을 실시하고 염색시간에 대한 염착량을 측정하였다. 염착량에 대한 초임계유체의 온도와 압력의 영향이 검토되었다.이산화탄소와 HFC-134a의 초임계 용매를 비교하기 위하여 두 용매에 대한 염료의 용해도와 평형염착량의 관계를 검토하였다. 동일한 온도에서 HFC-134a를 초임계유체로 사용할 때보다 이산화탄소를 사용하는 것이 큰 평형염착량을 나타내었다. HFC-134a에 대한 염료의 용해도는 이산화탄소보다 훨씬 크지만 직물을 염색하는 초임계용매는 이산화탄소가 더 유리하였다.
The uptake of disperse dye into polyester fiber in supercritical carbon dioxide was measured in the pressure range between 150 bar and 300 bar at each temperature of 333.3 K, 373.2 K and 413.2 K, and the uptake in supercritical HFC-134a was measured in the pressure range between 50 bar and 160 bar at each temperature of 383.2 K, 413.2 K, using a flow-type apparatus with a cylindrical dyeing vessel. The effect of dye uptake in supercritical fluids on temperature and pressure was_x000D_
investigated. The dye uptake at constant pressure was much increased with temperature than it did with the pressure at constant temperature. The equilibrium uptakes of disperse dye in the supercritical carbon dioxide were compared with those in the supercritical HFC-134a. The equilibrium uptakes in the supercritical carbon dioxide were much great than those in the HFC-134a at the same temperature. The supercritical carbon dioxide is better supercritical media than the HFC-134a, even though dye in the supercritical HFC-134a is much solved than in the supercritical carbon dioxide.
References
Saus W, Knittel D, Schollmeyer E, Text. Res. J., 63, 135 (1993)
Gebert B, Saus W, Knittel D, Buschmann HJ, Schollmeyer E, Text. Res. J., 64, 371 (1994)
Knittel D, Schollmeyer E, Melliand Textilber, 76, 1092 (1995)
Bach E, Cleve E, Schollmeyer E, vonRohr R, Trepp C, High Pressure Chemical Engineering, Elsevier, Amsterdam, 581 (1996)
Bach E, Cleve E, Schollmeyer E, Melliand International, 2, 165 (1999)
Bach E, Cleve E, Schollmeyer E, Melliand International, 3, 192 (1998)
Chang KH, Bae HK, Shim JJ, Korean J. Chem. Eng., 13(3), 310 (1996)
Bae HK, Her BK, HWAHAK KONGHAK, 34(3), 379 (1996)
Park MW, Bae HK, HWAHAK KONGHAK, 40(6), 715 (2002)
Lee JW, Min JM, Bae HK, J. Chem. Eng. Data, 44(4), 684 (1999)
Lee JW, Park MW, Bae HK, Fluid Phase Equilib., 179, 387 (2001)
Kramer A, Thodos G, Ind. Eng. Chem. Res., 27, 1506 (1988)
Iwai Y, Koga Y, Fukuda T, Arai J, J. Chem. Eng. Jpn., 25(6), 757 (1992)
Gebert B, Saus W, Knittel D, Buschmann HJ, Schollmeyer E, Text. Res. J., 64, 371 (1994)
Knittel D, Schollmeyer E, Melliand Textilber, 76, 1092 (1995)
Bach E, Cleve E, Schollmeyer E, vonRohr R, Trepp C, High Pressure Chemical Engineering, Elsevier, Amsterdam, 581 (1996)
Bach E, Cleve E, Schollmeyer E, Melliand International, 2, 165 (1999)
Bach E, Cleve E, Schollmeyer E, Melliand International, 3, 192 (1998)
Chang KH, Bae HK, Shim JJ, Korean J. Chem. Eng., 13(3), 310 (1996)
Bae HK, Her BK, HWAHAK KONGHAK, 34(3), 379 (1996)
Park MW, Bae HK, HWAHAK KONGHAK, 40(6), 715 (2002)
Lee JW, Min JM, Bae HK, J. Chem. Eng. Data, 44(4), 684 (1999)
Lee JW, Park MW, Bae HK, Fluid Phase Equilib., 179, 387 (2001)
Kramer A, Thodos G, Ind. Eng. Chem. Res., 27, 1506 (1988)
Iwai Y, Koga Y, Fukuda T, Arai J, J. Chem. Eng. Jpn., 25(6), 757 (1992)