Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 29, 2003
Accepted February 13, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
세밀하게 조절된 나노구조 TiO2 그래뉼의 제조
Synthesis of Precisely Controlled Nanostructured TiO2 Granules
경희대학교 환경응용화학부, 449-701 용인시 기흥읍 서천리 1
College of Environment & Applied Chemistry, Kyung Hee University, 1, Seochun-ri, Kiheung-eup, Yongin, Gyeonggi 449-701, Korea
jkim21@khu.ac.kr
Korean Chemical Engineering Research, April 2004, 42(2), 224-227(4), NONE Epub 14 May 2004
Abstract
졸겔법과 해교 및 수열처리 등을 이용하여 TiO2나노입자를 제조하고, 이를 분무건조하여 구형의 나노구조 TiO2그래뉼을 제조하였다. TiO2 나노입자의 크기 및 결정상은 합성방법과 합성조건에 따라 다른 특성을 나타내었다. 나노구조 TiO2 그래뉼의 결정상, 비표면적, 기공분포 등은 피드용액 중의 나노입자를 제어하여 세밀하게 조절될 수 있었다. 특히 졸겔 침전물로 만든 그래뉼은 무결정상이며 bimodal 기공크기 분포를 갖는 반면, 해교된 졸과 수열처리 슬러리로 만든 그래뉼은 아나타제상의 monomodal 기공크기 분포를 갖는다. 제조된 그래뉼 중 수열처리 슬러리로 만든 그래뉼이 가장 높은 열적 안정성을 보였다.
TiO2 nanoparticles were prepared by sol-gel method, followed by peptization or hydrothermal process and then they were packaged into spherical nanostructured TiO2 granules by spray drying. The size, crystallinity and other characteristics of TiO2 particles are dependent upon the preparation methods and conditions. The crystallinity, specific surface area, and pore size distribution of TiO2 granules were precisely controlled by adjusting preparation conditions during nanoparticle synthesis. Especially, the granules from sol-gel precipitates were amorphous with bimodal pore size distribution, while those from peptized sol and hydrothermal slurry were anatase with monomodal pore size distribution. Among the investigated granules, the granules from hydrothermal process showed the best thermal stability.
References
Gleiter H, Adv. Mater., 4, 474 (1992)
Matsuda S, Kato A, Appl. Catal., 8, 149 (1983)
Exnar I, Kavan L, Huang SY, Gratzel M, J. Power Sources, 68(2), 720 (1997)
Savage NO, Akbar SA, Dutta PK, Sens. Actuators B-Chem., 72(3), 239 (2001)
Pratsinis SE, Prog. Energy Combust. Sci., 24(3), 197 (1998)
Kominami H, Takada Y, Yamagiwa H, Kera Y, Inoue M, Inui T, J. Mater. Sci. Lett., 15(3), 197 (1996)
Brinker CJ, Scherer GW, Sol-Gel Science, Academic Press, New York, NY (1990)
Song KC, Pratsinis SE, J. Am. Ceram. Soc., 84(1), 92 (2001)
Lukasiewicz SJ, J. Am. Ceram. Soc., 72, 617 (1989)
Walker WJ, Reed JS, Verma SK, J. Am. Ceram. Soc., 82(7), 1711 (1999)
Kim J, Wilhelm O, Pratsinis SE, J. Am. Ceram. Soc., 84(12), 2802 (2001)
Matsuda S, Kato A, Appl. Catal., 8, 149 (1983)
Exnar I, Kavan L, Huang SY, Gratzel M, J. Power Sources, 68(2), 720 (1997)
Savage NO, Akbar SA, Dutta PK, Sens. Actuators B-Chem., 72(3), 239 (2001)
Pratsinis SE, Prog. Energy Combust. Sci., 24(3), 197 (1998)
Kominami H, Takada Y, Yamagiwa H, Kera Y, Inoue M, Inui T, J. Mater. Sci. Lett., 15(3), 197 (1996)
Brinker CJ, Scherer GW, Sol-Gel Science, Academic Press, New York, NY (1990)
Song KC, Pratsinis SE, J. Am. Ceram. Soc., 84(1), 92 (2001)
Lukasiewicz SJ, J. Am. Ceram. Soc., 72, 617 (1989)
Walker WJ, Reed JS, Verma SK, J. Am. Ceram. Soc., 82(7), 1711 (1999)
Kim J, Wilhelm O, Pratsinis SE, J. Am. Ceram. Soc., 84(12), 2802 (2001)