Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 11, 2003
Accepted February 13, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
액체-고체 순환유동층에서 액상의 반경 방향 혼합 및 액체-고체 Chaotic 흐름 거동
Radial Liquid Dispersion and Chaotic Behavior of Liquid-Solid Flow in Liquid-Solid Circulating Fluidized Beds
충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220 1한국과학기술원 생명화학공학과, 305-701 대전시 유성구 구성동 373-1 2전남대학교 환경공학과, 500-757 광주시 북구 용봉동 300
School of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-gu, Daejeon 305-764, Korea 1Department of Biomolecular & Chemical Engineering, KAIST, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea 2Department of Environmental Engineering, Chonnam National University, 300, Yongbong-dong, Puk-gu, Gwangju 500-757, Korea
Korean Chemical Engineering Research, April 2004, 42(2), 241-247(7), NONE Epub 14 May 2004
Abstract
직경이 0.102 m이고 높이가 3.5 m인 액체-고체 순환유동층의 상승관에서 압력요동 및 액체의 반경 방향 혼합 특성을 고찰하였다. 상승관에서 얻은 압력요동을 해석하기 위하여 chaos 이론을 도입하였다. 액체 유속, 유동입자의 크기 그리고 고체유동입자의 순환속도가 연속액상의 반경방향 분산계수 및 압력요동의 위상공간투영과 상관차원에 미치는 영향을 결정하였다. 본 연구의 결과 액상의 반경방향 분산계수는 유동입자의 크기와 순환속도가 증가함에 따라 증가하였으며 액상의 유속이 증가함에 따라 감소하였다. 상승관에서 압력요동의 위상공간투영은 유동입자의 크기와 고체 유동입자의 순환속도가 증가함에 따라 점점 분산되고 복잡하게 되었으나, 액체유속이 증가함에 따라서는 위상공간에서 궤적의 분산이 다소 감소하는 경향을 나타내었다. 압력요동의 상관차원은 유동입자의 크기와 고체 순환속도가 증가함에 따라 증가하였으나, 액체의 유속이 증가함에 따라서는 큰 변화가 없었다. 본 연구의 결과는, 상승관에서 액상의 반경 방향 혼합 특성 압력요동 측정함으로써 실시간으로 예측하는 것을 가능하게 하여 실제공정에 응용함으로써 그 실용적 측면이 크다고 하겠다.
Characteristics of pressure fluctuations and liquid dispersion in the radial direction were investigated in the riser of a liquid-solid circulating fluidized bed whose diameter was 0.102 m and 3.5 m in height. The concept of chaos theory was employed to analyze the pressure fluctuations obtained in the riser. Effects of liquid velocity, particle size, and solid circul ation rate on the liquid radial dispersion coefficient and phase space portraits and correlation dimension of pressure fluctuations were determined. It was found that the radial dispersion coefficient of liquid phase increased with increasing particle size or solid circulation rate, but decreased with increasing liquid velocity. The attractor in the phase space portraits became more scattere d and complicated with increasing particle size or solid circulation rate, but it became somewhat less scattered with increasing liquid velocity. The correlation dimension of pressure fluctuations increased with increasing particle size or solid circulation rate, but it did not change considerably with increasing liquid velocity. The results of this study enable us to predict the characteristics of liquid radial dispersion by means of the pressure fluctuations for the practical applications.
Keywords
References
Fan LS, "Gas-Liquid-Solid Fluidization Engineering," Butter-worths, Stonehair, MA (1989)
Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997)
Lee CG, Kang SH, Shin KS, Song PS, Kang Y, Kim SD, HWAHAK KONGHAK, 41(4), 524 (2003)
Hamoudi S, Belkacemi K, Sayari A, Larachi F, Chem. Eng. Sci., 56(4), 1275 (2001)
Zheng Y, Zhu JX, Powder Technol., 114(1-3), 244 (2001)
Zheng Y, Zhu JXJ, Wen JZ, Martin SA, Bassi AS, Margaritis A, Can. J. Chem. Eng., 77(2), 284 (1999)
Kuramoto K, Tanaka K, Tsutsumi A, Yoshida K, Chiba T, J. Chem. Eng. Jpn., 31(2), 258 (1998)
Kuramoto K, Tsutsumi A, Chiba T, Can. J. Chem. Eng., 77(2), 291 (1999)
Liang WG, Zhu JX, Jin Y, Yu ZQ, Wang ZW, Zhou J, Chem. Eng. Sci., 51(10), 2001 (1996)
Cho YJ, Kang TG, Kang Y, Kim SD, Fan LT, Chem. Eng. Commun., in press (2003)
Karamavruc AI, Clark NN, Halow JS, Powder Technol., 84(3), 247 (1995)
Grassberger P, Procaccia I, Phys. Rev., A, 28, 2591 (1983)
Kang Y, Kim SD, Ind. Eng. Chem. Process Des. Dev., 25, 717 (1986)
Cho YJ, Song PS, Kim SH, Kang Y, Kim SD, J. Chem. Eng. Jpn., 34(2), 254 (2001)
Kang Y, Cho YJ, Woo KJ, Kim SD, Chem. Eng. Sci., 54(21), 4887 (1999)
Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997)
Lee CG, Kang SH, Shin KS, Song PS, Kang Y, Kim SD, HWAHAK KONGHAK, 41(4), 524 (2003)
Hamoudi S, Belkacemi K, Sayari A, Larachi F, Chem. Eng. Sci., 56(4), 1275 (2001)
Zheng Y, Zhu JX, Powder Technol., 114(1-3), 244 (2001)
Zheng Y, Zhu JXJ, Wen JZ, Martin SA, Bassi AS, Margaritis A, Can. J. Chem. Eng., 77(2), 284 (1999)
Kuramoto K, Tanaka K, Tsutsumi A, Yoshida K, Chiba T, J. Chem. Eng. Jpn., 31(2), 258 (1998)
Kuramoto K, Tsutsumi A, Chiba T, Can. J. Chem. Eng., 77(2), 291 (1999)
Liang WG, Zhu JX, Jin Y, Yu ZQ, Wang ZW, Zhou J, Chem. Eng. Sci., 51(10), 2001 (1996)
Cho YJ, Kang TG, Kang Y, Kim SD, Fan LT, Chem. Eng. Commun., in press (2003)
Karamavruc AI, Clark NN, Halow JS, Powder Technol., 84(3), 247 (1995)
Grassberger P, Procaccia I, Phys. Rev., A, 28, 2591 (1983)
Kang Y, Kim SD, Ind. Eng. Chem. Process Des. Dev., 25, 717 (1986)
Cho YJ, Song PS, Kim SH, Kang Y, Kim SD, J. Chem. Eng. Jpn., 34(2), 254 (2001)
Kang Y, Cho YJ, Woo KJ, Kim SD, Chem. Eng. Sci., 54(21), 4887 (1999)