Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 28, 2004
Accepted August 25, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
직접 메탄올 연료전지용 초임계 함침을 이용한 나피온/폴리스타이렌 복합막의 제조
Preparation of Nafion/polystyrene Composite Membranes using Supercritical CO2 Impregnation for DMFCs
서울대학교 응용화학부, 151-742 서울시 관악구 신림동 산56-1
School of Chemical Engineering & Institute of Chemical Processes, Seoul National Universty, San 56-1, Shinlim-dong, Gwanak-gu, Seoul 151-742, Korea
Korean Chemical Engineering Research, October 2004, 42(5), 619-623(5), NONE Epub 18 November 2004
Abstract
초임계 이산화탄소를 용매 및 팽윤제로 사용하여 함침 및 라디칼 중합으로 나피온 막에 스타이렌(styrene)을 그래프팅 시켰다. 함침 공정에서 소량의 이산화탄소를 원하는 압력에 도달할 때까지 장치내로 충전했다. 스타이렌 단량체, 개시제인 AIBN 그리고 가교제인 DVB를 38 ℃에서 4시간 동안 함침시켰다. 이산화탄소를 일부 제거한 후, 온도를 80 ℃로 높이고 압력이 10MPa인 상태에서 4시간 동안 함침시켰다. 이산화탄소를 일부 제거한 후, 온도를 80 ℃로 높이고 압력이 10MPa인 상태에서 4시간 동안 중합과정을 수행하였다. 그래프팅 된 막(N-g-ps)은 실온과 95 ℃에서 98% 황산으로 슬폰화도를 변화시켰다. 술폰화된 복합 막(N-g-pssa)은 이온 교환 능력(IEC), 함수율, 이온전도도 그리고 메탄올 투과도가 측정되었다. 복합 막의 구조와 형태는 FT-IR과 SEM으로 관찰하였다. 나피온 115의 메탄올 투과도는 3.29X10-6cm2/s로써 술폰화된 복합 막보다 더 높았다. 술폰화된 복합막의 투과도는 2.15X10-6에서 1.74X10-6cm2/s로 DVB 함량이 증가함에 따라 감소하였다. DVB를 첨가하지 않은 술폰화된 복합막은 가장 높은 이온 전도도(0.0461 S/cm)와 나피온 115 보다 낮은 메탄올 투과도로 인하여 0.35 V에서 가장 좋은 성능을 보였다.
Grafting of styrene onto nafion membranes was carried out by the impregnation and radical polymerization in the supercritical carbon dioxide (scCO2) as a solvent and swelling agent. In impregnation process, certain amounts of CO2 was charged into the apparatus until desired pressure was reached. Styrene monomer, initiator 2,2'-azoisobutyronitrile (AIBN) and crosslinker divinyl benzene (DVB) were impregnated into nafion membranes at 38 ℃ for 4 h. After releasing CO2, the polymerization step then was started by raising the temperature to 80 ℃ and carried out at a pressure of 10 MPa for 4 h. The grafted membranes (N-g-ps) have been sulfonated to various degrees in concentrated sulfuric acid (98% H2SO4) at room temperature or 95 ℃. The sulfonated membranes (N-g-pssa) were characterized by measuring their ion exchange capacities (IEC), wateruptake, ion conductivity and methanol permeation. The structure and morphology of these membranes were observed with fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The permeability of methanol in nafion 115 was higher, with a value of 3.29×10-6 cm2/s than that of a N-g-pssa membrane. The permeabilities of the N-g-pssa membranes decreased with increasing concentration of DVB, i.e. from 2.15×10 -6 to 1.74×10 -6 cm2/s. The N-g-pssa membranes (without DVB) has the best cell performance at 0.35 V because this membrane probably has the highest ion conductivity (0.0461 S/cm) and lower methanol permeability than that of Nafion 115.
Keywords
References
Appleby AJ, Foulkes FR, "Fuel Cell Handbook", Van Nostrand Reinhold, N.Y, 3 (1989)
Kordesh KV, J. Electrochem. Soc., 25, 77 (1978)
Hamnett A, Troughton GL, Chem. Ind., 480 (1992)
Sauk JH, Shul YG, Jung DH, Kim CS, Shin DR, Yang JC, HWAHAK KONGHAK, 37(1), 21 (1999)
Kuver A, Vogel I, Vielstich W, J. Power Sources, 52(1), 77 (1994)
Scott K, Taama W, Cruickshank J, J. Appl. Electrochem., 28(3), 289 (1998)
Guo QH, Pintauro PN, Tang H, O'Connor S, J. Membr. Sci., 154(2), 175 (1999)
Flint SD, Slade RC, Solid State Ion., 97(1-4), 299 (1997)
Dimitrova P, Friedrich KA, Stimming U, Vogt B, Solid State Ion., 150(1-2), 115 (2002)
Florjanczyk Z, Wielgus-Barry E, Poltarzewski Z, Solid State Ion., 145(1-4), 119 (2001)
Li D, Han BX, Macromolecules, 33(12), 4555 (2000)
Muth O, Hirth T, Vogel H, J. Supercrit. Fluids, 17(1), 65 (2000)
Li D, Han BX, Ind. Eng. Chem. Res., 39(12), 4506 (2000)
Takenaka H, Torikai E, Kawami Y, Wakabayashi N, Int. J. Hydrog. Energy, 7, 397 (1982)
Sauk J, Byun J, Kim H, J. Power Sources, 132(1), 59 (2004)
Rouilly MV, Kots ER, Haas O, Scherer GG, Chapiro A, J. Membr. Sci., 81(1), 89 (1993)
Chen TY, Leddy J, Langmuir, 16(6), 2866 (2000)
Cahan BD, Wainright JS, J. Electrochem. Soc., 140(12), 185 (1993)
Tricoli V, J. Electrochem. Soc., 145(11), 3798 (1998)
Kordesh KV, J. Electrochem. Soc., 25, 77 (1978)
Hamnett A, Troughton GL, Chem. Ind., 480 (1992)
Sauk JH, Shul YG, Jung DH, Kim CS, Shin DR, Yang JC, HWAHAK KONGHAK, 37(1), 21 (1999)
Kuver A, Vogel I, Vielstich W, J. Power Sources, 52(1), 77 (1994)
Scott K, Taama W, Cruickshank J, J. Appl. Electrochem., 28(3), 289 (1998)
Guo QH, Pintauro PN, Tang H, O'Connor S, J. Membr. Sci., 154(2), 175 (1999)
Flint SD, Slade RC, Solid State Ion., 97(1-4), 299 (1997)
Dimitrova P, Friedrich KA, Stimming U, Vogt B, Solid State Ion., 150(1-2), 115 (2002)
Florjanczyk Z, Wielgus-Barry E, Poltarzewski Z, Solid State Ion., 145(1-4), 119 (2001)
Li D, Han BX, Macromolecules, 33(12), 4555 (2000)
Muth O, Hirth T, Vogel H, J. Supercrit. Fluids, 17(1), 65 (2000)
Li D, Han BX, Ind. Eng. Chem. Res., 39(12), 4506 (2000)
Takenaka H, Torikai E, Kawami Y, Wakabayashi N, Int. J. Hydrog. Energy, 7, 397 (1982)
Sauk J, Byun J, Kim H, J. Power Sources, 132(1), 59 (2004)
Rouilly MV, Kots ER, Haas O, Scherer GG, Chapiro A, J. Membr. Sci., 81(1), 89 (1993)
Chen TY, Leddy J, Langmuir, 16(6), 2866 (2000)
Cahan BD, Wainright JS, J. Electrochem. Soc., 140(12), 185 (1993)
Tricoli V, J. Electrochem. Soc., 145(11), 3798 (1998)