Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 13, 2004
Accepted October 26, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
막ㆍ전극접합체에서 함수율 분포의 직접계산을 위한 수학적 모델
A Mathematical Model for Direct Calculation of Water Content Distribution in Membrane Electrode Assembly
한양대학교 화학공학과, 133-791 서울시 성동구 행당동 17
Department of Chemical Engineering, Hanyang University, 17, Haengdang-dong, Seondong-gu, Seoul 133-791, Korea
Korean Chemical Engineering Research, December 2004, 42(6), 654-661(8), NONE Epub 11 January 2005
Abstract
고분자전해질형 연료전지의 핵심부품에 해당하는 막ㆍ전극접합체 내부에서 함수율의 분포를 지배방정식을 이용하여 직접 계산하였다. 전산유체역학의 개념을 이용하는 기존의 모델이 지나는 수치적인 한계를 극복하기 위하여 다층(multilayer)으로 구성되는 시스템에 내부경계조건(internal boundary condition)을 적용하여 MEA내부에서의 함수율에 관한 지배방정식을 직접 적용하였다. 내부경계조건의 도입의 타당성은 분극곡선(polarization curve)의 비교를 통해 간접적으로 검증하였으며 문헌상의 실험결과와 본 연구에서 예측된 결과를 비교하였다.
Water content is one of the critical factors in predicting physical and electrochemical phenomena in Membrane Electrode Assembly(MEA), which is a core element of polymer electrolyte fuel cell(PEFC). Water content directly affects on proton conductivity in MEA and is also a very important parameter in predicting current density distribution. To paraphrase, water content is a critical factor in predicting the performance of PEFC. Therefore, accurate prediction of water content distribution in MEA is important in PEFC modeling. In this paper, in order to directly calculate the water content distribution in MEA, we introduced a mathematical model, which is based on computational fluid dynamics, using internal boundary conditions and validated it by comparing with experimental data.
Keywords
References
Carrette L, ChemphysChem, 1, 162 (2000)
Carrette L, Friedrich KA, Stimming U, Fuel Cells, 1, 5 (2001)
High Temperature Membranes for Solid Polymer Fuel Cells, ETSU F/02-00189-REP (2001)
Choi KH, Peck DH, Kim CS, Shin DR, Lee TH, J. Power Sources, 86(1-2), 197 (2000)
White RE, Lorimer SE, Darby R, J. Electrochem. Soc., 130, 1123 (1983)
Springer TE, Zawodzinski TA, Gottesfeld S, J. Electrochem. Soc., 138, 2334 (1991)
Dutta S, Shimpalee S, Van Zee JW, J. Appl. Electrochem., 30(2), 135 (2000)
Meng H, Wang CY, J. Electrochem. Soc., 151(3), A358 (2004)
Um S, Wang CY, J. Power Sources, 125(1), 40 (2004)
Um S, Wang CY, Chen CS, J. Electrochem. Soc., 147(12), 4485 (2000)
Berning T, Lu DM, Djilali N, J. Power Sources, 106(1-2), 284 (2002)
Kulikovsky AA, Fuel Cells, 1(2), 162 (2001)
Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153 (2004)
Patankar SV, Numerical heat Transfer and Fluid Flow, Hemisphere Publishing Corporation (1980)
Ticianelli EA, Derouin CR, Srinivasan S, J. Electroanal. Chem., 251, 275 (1988)
Bernadi DM, Verbrugge MW, J. Electrochem. Soc., 139(9), 2477 (1992)
Bird RB, Transport Phenomena, John Wiley & Sons, Inc. (1960)
http://mtrll.me.psu.edu/
http://www.che.sc.edu/centers/PEMFC
http://www.freechal.com/fuelcell
Carrette L, Friedrich KA, Stimming U, Fuel Cells, 1, 5 (2001)
High Temperature Membranes for Solid Polymer Fuel Cells, ETSU F/02-00189-REP (2001)
Choi KH, Peck DH, Kim CS, Shin DR, Lee TH, J. Power Sources, 86(1-2), 197 (2000)
White RE, Lorimer SE, Darby R, J. Electrochem. Soc., 130, 1123 (1983)
Springer TE, Zawodzinski TA, Gottesfeld S, J. Electrochem. Soc., 138, 2334 (1991)
Dutta S, Shimpalee S, Van Zee JW, J. Appl. Electrochem., 30(2), 135 (2000)
Meng H, Wang CY, J. Electrochem. Soc., 151(3), A358 (2004)
Um S, Wang CY, J. Power Sources, 125(1), 40 (2004)
Um S, Wang CY, Chen CS, J. Electrochem. Soc., 147(12), 4485 (2000)
Berning T, Lu DM, Djilali N, J. Power Sources, 106(1-2), 284 (2002)
Kulikovsky AA, Fuel Cells, 1(2), 162 (2001)
Lee CS, Yi SC, Korean J. Chem. Eng., 21(6), 1153 (2004)
Patankar SV, Numerical heat Transfer and Fluid Flow, Hemisphere Publishing Corporation (1980)
Ticianelli EA, Derouin CR, Srinivasan S, J. Electroanal. Chem., 251, 275 (1988)
Bernadi DM, Verbrugge MW, J. Electrochem. Soc., 139(9), 2477 (1992)
Bird RB, Transport Phenomena, John Wiley & Sons, Inc. (1960)
http://mtrll.me.psu.edu/
http://www.che.sc.edu/centers/PEMFC
http://www.freechal.com/fuelcell