Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 9, 2004
Accepted November 12, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
회합성 유체의 상태방정식 및 회합성 유체 혼합물의 기-액 평형
An Equation of State for Associating Fluids and Vapour-Liquid Equilibria of Associating Mixtures
강원대학교 화학공학과, 200-701 강원도 춘천시 효자2동 192-1
Department of Chemical Engineering, Kangwon National University, 192-1, Hyoja-2 dong, Chunchon 200-701, Korea
kichang@kangwon.ac.kr
Korean Chemical Engineering Research, December 2004, 42(6), 673-683(11), NONE Epub 11 January 2005
Abstract
본 연구에서는 회합성 유체에 적용 가능한 상태방정식을 모델링하기 위하여 3차 상태방정식인 Peng-Robinson식에 SAFT 모델의 회합 항을 결합한 셩태의 PRPA 상태방정식(Peng-Robinson-Plus-Association EoS)을 정의하였으며, 이 상태방정식은 회합성 유체의 경우 파라미터의 수는 5개이고 유체의 부피에 대하여는 비 3차(non-cubic)의 관계를 갖는다. 본 연구의 상태방정식을 회합성 유체인 알코올, 아민, 유기산 및 물 등의 화합물의 PVT 데이터에 적용하여 5개의 순 성분 파라미터를 추진하였으며 또한 추산된 파라미터 값의 분포를 화학종 별로 분석하여 상태방정식의 파라미터를 3개로 줄일 수 있었다. 본 연구의 5-파라미터 및 3-파라미터의 상태방정식 관계는 모두 회합성 유체의 포화증기압 및 액체 몰부피의 예측에 양호한 결과를 보였다. 한편, 본 연구의 상태방정식 관계를 이용하여 회합성 유체의 혼합물인 알코올/알코올, 알코올/아민, 알코올/유기산 및 알코올/물 계의 기액 평형을 계산하였으며, 계산 결과는 공비 혼합물인 ethanol/water 계를 제외한 모든 계에서 양호한 결과를 보였다.
The equation of state which combines Peng-Robinson EoS and the association term of SAFT model was presented for describing thermodynamic properties and phase behaviors of associating fluids. The resulting EoS(Peng-Robinson-Plus-Association) is not cubic with respect to volume and contains five pure compound parameters. 5-parameters of pure chemical compounds were estimated with correlations of both saturated vapour pressures and liquid volumes for alcohols, primary amines, carboxyl acids and water. A method to reduce the number of adjustable pure compound parameters from five to three was considered, and then the 3-parameters EoS model was obtained. This 3-parameter model maintained the good correlations of saturated vapour pressures and liquid volumes. Additionally the equation of state proposed in this work was applied to calculations of vapour-liquid equilibria for the binary mixtures containing associating chemicals, the result showed a good agreement with experimental data for all binary mixtures except for the ethanol/water system, examined in this work.
References
Sandler SI, Models for Thermodynamic and Phase Equilibria calculations," Marcel Dekker, Inc. (1994)
Heidemann RA, Prausnitz JM, Proc. Natl. Acad. Sci., 73(6), 1773 (1976)
Anderko A, Fluid Phase Equilib., 45(1), 39 (1989)
Wenzel H, Krop E, Fluid Phase Equilib., 59(2), 147 (1990)
Elliott JR, Suresh SJ, Donohue MD, Ind. Eng. Chem. Res., 29(7), 1476 (1990)
Twu CH, Coon JE, Cunningham JR, Fluid Phase Equilib., 82, 379 (1993)
Ikonomou GD, Donohue MD, AIChE J., 32(10), 1716 (1986)
Vimalchand P, Donohue MD, Ind. Eng. Chem. Res., 24(2), 246 (1985)
Economou IG, Ikonomou GD, Vimalchand P, Donohue MD, AIChE J., 36(12), 1851 (1990)
Sanchez IC, Lacombe RH, J. Phys. Chem., 80(21), 2352 (1976)
Lacombe RH, Sanchez IC, J. Phys. Chem., 80(23), 2568 (1976)
Panayiotou CG, J. Phys. Chem., 92(10), 2960 (1988)
Panayiotou CG, Sanchez IC, J. Phys. Chem., 95(24), 10090 (1991)
Veytsman BA, J. Phys. Chem., 94(23), 8499 (1990)
Yeom MS, Yoo KP, Park BH, Lee CS, Fluid Phase Equilib., 158, 143 (1999)
Wertheim MS, J. Stat. Phys., 35(1-2), 19 (1984)
Wertheim MS, J. Stat. Phys., 35(1-2), 35 (1984)
Chapman WG, Gubbins KE, Jackson G, Radoz M, Fluid Phase Equilib., 52, 31 (1989)
Chapman WG, Gubbins KE, Jackson G, Radoz M, Ind. Eng. Chem. Res., 29(8), 1709 (1990)
Huang SH, Radosz M, Ind. Eng. Chem. Res., 29(11), 2284 (1990)
Huang SH, Radosz M, Ind. Eng. Chem. Res., 30(8), 1994 (1991)
Fu YH, Sandler SI, Ind. Eng. Chem. Res., 34(5), 1897 (1995)
Kraska T, Gubbins KE, Ind. Eng. Chem. Res., 35(12), 4727 (1996)
Blas FJ, Vega LF, Ind. Eng. Chem. Res., 37(2), 660 (1998)
Gilvillegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN, J. Chem. Phys., 106(10), 4168 (1997)
Adidharma H, Radosz M, Ind. Eng. Chem. Res., 37(11), 4453 (1998)
Pfohl O, Brunner G, Ind. Eng. Chem. Res., 37(8), 2966 (1998)
Kiselev SB, Ely JF, Ind. Eng. Chem. Res., 38(12), 4993 (1999)
Gross J, Sadowski G, Ind. Eng. Chem. Res., 40(4), 1244 (2001)
Muller EA, Gubbins KE, Ind. Eng. Chem. Res., 40(10), 2193 (2001)
Economou IG, Donohue MD, Ind. Eng. Chem. Res., 31(10), 2388 (1992)
Kontogeorgis GM, Voutsas EC, Yakoumis IV, Tassios DP, Ind. Eng. Chem. Res., 35(11), 4310 (1996)
Kontogeorgis GM, Yakoumis IV, Meijer H, Hendriks E, Moorwood T, Fluid Phase Equilib., 158, 201 (1999)
Suresh J, Beckman EJ, Fluid Phase Equilib., 99, 219 (1994)
Wolbach JP, Sandler SI, Ind. Eng. Chem. Res., 37(8), 2917 (1998)
Smith BD, Srivastava R, Thermodynamic Data for Pure Compounds," Physical Science Data Series No. 25, Elsevier (1986)
Daubert TE, Danner RP, Sibul HM, Stebbins CC, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation," Taylor & Francis Bristol, PA (1995)
Gmehling J, Onken U, Arlt W, Chemisty Data Series: Vapour Liquid Equilibrium Data Collection," DECHEMA< Frankfurt (1982)
Heidemann RA, Prausnitz JM, Proc. Natl. Acad. Sci., 73(6), 1773 (1976)
Anderko A, Fluid Phase Equilib., 45(1), 39 (1989)
Wenzel H, Krop E, Fluid Phase Equilib., 59(2), 147 (1990)
Elliott JR, Suresh SJ, Donohue MD, Ind. Eng. Chem. Res., 29(7), 1476 (1990)
Twu CH, Coon JE, Cunningham JR, Fluid Phase Equilib., 82, 379 (1993)
Ikonomou GD, Donohue MD, AIChE J., 32(10), 1716 (1986)
Vimalchand P, Donohue MD, Ind. Eng. Chem. Res., 24(2), 246 (1985)
Economou IG, Ikonomou GD, Vimalchand P, Donohue MD, AIChE J., 36(12), 1851 (1990)
Sanchez IC, Lacombe RH, J. Phys. Chem., 80(21), 2352 (1976)
Lacombe RH, Sanchez IC, J. Phys. Chem., 80(23), 2568 (1976)
Panayiotou CG, J. Phys. Chem., 92(10), 2960 (1988)
Panayiotou CG, Sanchez IC, J. Phys. Chem., 95(24), 10090 (1991)
Veytsman BA, J. Phys. Chem., 94(23), 8499 (1990)
Yeom MS, Yoo KP, Park BH, Lee CS, Fluid Phase Equilib., 158, 143 (1999)
Wertheim MS, J. Stat. Phys., 35(1-2), 19 (1984)
Wertheim MS, J. Stat. Phys., 35(1-2), 35 (1984)
Chapman WG, Gubbins KE, Jackson G, Radoz M, Fluid Phase Equilib., 52, 31 (1989)
Chapman WG, Gubbins KE, Jackson G, Radoz M, Ind. Eng. Chem. Res., 29(8), 1709 (1990)
Huang SH, Radosz M, Ind. Eng. Chem. Res., 29(11), 2284 (1990)
Huang SH, Radosz M, Ind. Eng. Chem. Res., 30(8), 1994 (1991)
Fu YH, Sandler SI, Ind. Eng. Chem. Res., 34(5), 1897 (1995)
Kraska T, Gubbins KE, Ind. Eng. Chem. Res., 35(12), 4727 (1996)
Blas FJ, Vega LF, Ind. Eng. Chem. Res., 37(2), 660 (1998)
Gilvillegas A, Galindo A, Whitehead PJ, Mills SJ, Jackson G, Burgess AN, J. Chem. Phys., 106(10), 4168 (1997)
Adidharma H, Radosz M, Ind. Eng. Chem. Res., 37(11), 4453 (1998)
Pfohl O, Brunner G, Ind. Eng. Chem. Res., 37(8), 2966 (1998)
Kiselev SB, Ely JF, Ind. Eng. Chem. Res., 38(12), 4993 (1999)
Gross J, Sadowski G, Ind. Eng. Chem. Res., 40(4), 1244 (2001)
Muller EA, Gubbins KE, Ind. Eng. Chem. Res., 40(10), 2193 (2001)
Economou IG, Donohue MD, Ind. Eng. Chem. Res., 31(10), 2388 (1992)
Kontogeorgis GM, Voutsas EC, Yakoumis IV, Tassios DP, Ind. Eng. Chem. Res., 35(11), 4310 (1996)
Kontogeorgis GM, Yakoumis IV, Meijer H, Hendriks E, Moorwood T, Fluid Phase Equilib., 158, 201 (1999)
Suresh J, Beckman EJ, Fluid Phase Equilib., 99, 219 (1994)
Wolbach JP, Sandler SI, Ind. Eng. Chem. Res., 37(8), 2917 (1998)
Smith BD, Srivastava R, Thermodynamic Data for Pure Compounds," Physical Science Data Series No. 25, Elsevier (1986)
Daubert TE, Danner RP, Sibul HM, Stebbins CC, Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation," Taylor & Francis Bristol, PA (1995)
Gmehling J, Onken U, Arlt W, Chemisty Data Series: Vapour Liquid Equilibrium Data Collection," DECHEMA< Frankfurt (1982)