Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 4, 2004
Accepted November 11, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
플라스틱을 기판으로 이용한 소형 고분자전해질 연료전지
Miniature Plastic-Based Proton Exchange Membrane Fuel Cells
순천대학교 화학공학과, 540-742 전남 순천시 매곡동 315
Department of Chemical Engineering, Sunchon University, 315, Maegok-dong, Sunchon, Chonnam 540-742, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, December 2004, 42(6), 722-726(5), NONE Epub 11 January 2005
Abstract
본 연구에서 플라스틱(폴리이미드)을 기판으로 소형 고분자전해질 연료전지(PEMFC)를 제작하고 그 성능을 측정하였다. 폴리이미드를 집전체(current collector)와 유로 형성 재료로 사용하였으며 비전기전도체인 플라스틱의 표면에 금을 스퍼터링하여 전기전도성을 갖게 하였다. 전지 요소 간 접착력과 전기전도성을 동시에 높이기 위한 방법은 접착 성분과 전도성 성분을 혼합하는 대신 두 성분을 분리해 요소 사이에 투입하는 방법으로 가능했다. 수소는 NaBH4의 가수분해반응으로 제공되었으며 22 ℃, 상압조건의 공기에서 Nafion 117막과 E-TEK 전극을 사용해 banded 2-cell 운전 결과 20.7 mW/cm2의 최대 출력을 얻을 수 있었다.
The fabrication and performance evaluation of new miniature PEMFC based on plastic(polyimide) substrate are presented in this paper. Polyimide substrate provide a current collector and flow channel. The electronic conduction on the nonconductive polymer was enabled by sputtering of gold on the top of the polyimide. Strong adhesion and high conduction in binding of elements are obtained by using the method which attached adhesive and conductive component separately between elements instead of using mixture of these components. Hydrogen is provided by the hydrolysis of sodium borohydride (NaBH4). Operating on air at 22 ℃ and atmospheric pressure, the measured peak power density was 20.7mW/cm2 for the miniature banded two cell using a Nafion 117 and E-TEK electrodes.
References
Voss H, Huff J, J. Power Sources, 65(1), 155 (1997)
Dyer CK, J. Power Sources, 106(1), 31 (2002)
Lu GQ, Wang CY, Yen TJ, Zhang X, Electrochim. Acta, 49(5), 821 (2004)
Kojima Y, Suzuki KI, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H, Int. J. Hydrog. Energy, 27(6), 1029 (2002)
Wilkinson DP, St-Pierre J, Handbook of Fuel Cells (Fundamentals Technology and Applications), Vol.3, Ch.47, John Wiley & Sons, West Sussex (2003)
Dyer CK, J. Power Sources, 106(1), 31 (2002)
Lu GQ, Wang CY, Yen TJ, Zhang X, Electrochim. Acta, 49(5), 821 (2004)
Kojima Y, Suzuki KI, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H, Int. J. Hydrog. Energy, 27(6), 1029 (2002)
Wilkinson DP, St-Pierre J, Handbook of Fuel Cells (Fundamentals Technology and Applications), Vol.3, Ch.47, John Wiley & Sons, West Sussex (2003)