Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 29, 2003
Accepted September 13, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
다공성 활성탄소-실리카젤 복합전극의 전기용량적 탈이온 공정에의 응용
Applications of Porous Activated Carbon-Silica Gel Composite Electrodes for Capacitive Deionization Process
한국과학기술연구원 나노환경연구센터, 136-791 서울시 성북구 하월곡동 39-1 1연세대학교 화공·생명공학부, 120-749 서울시 서대문구 신촌동 134 2경원엔터프라이즈(주), 369-830 충북 음성군 삼성면 대정리 151
Eco-Nano Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Sungbuk-gu, Seoul 136-791, Korea 1School of Chemical Engineering and Biotechnology, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749, Korea 2Kyung Won Enterprise Corporation, 151, Daejeong-ri, Samseong-myeon, Eumseong-gun, Chungbuk 369-830, Korea
Korean Chemical Engineering Research, December 2004, 42(6), 748-753(6), NONE Epub 11 January 2005
Abstract
수자원의 공급량이 제한되어 있는 상황에서 물의 부족을 해결하기 위한 방법의 하나로 알려진, 전기화학적으로 이온을 흡착시켜 제거시키는 capacitive deionization(CDI) 공정용 전극으로서 활성탄소에 실리카젤이 첨가된 다공성 활성탄소-실리카젤 복합전극을 사용하여 1,000 ppm NaCl 수용액에서 각각 10회와 100회 동안 사이클을 진행시켜 탈이온과 재생 특성과 관련된 충전과 방전을 시간에 대한 전류변화, 사이클에 따른 전하량 변화, 활성탄소의 무게를 기준으로 한 방전 비전하량 그리고 충-방전 효율을 조사하였다. 활성탄소-실리카젤 복합전극은 CDI 반응진행에 대한 전극 활물질의 탈락 없이 전극의 성형성이 크게 향상되었고, 전극제조 시간도 50% 감소하였다. 5분의 충전과 방전으로 100회 사이클까지 평균 충전 전하량을 보면 40 wt%의 실리카젤이 첨가된 C 복합전극은 0.193 A·min.으로 실리카젤이 첨가되지 않은 A 전극(0.200 A·min.)에 비해 다소 감소하였다. 그러나 활성탄소의 무게를 기준으로 한 평균 방전 비전하량의 경우, A 전극은 0.317 (A·min.)/g인데 반하여, C 복합전극의 경우, 0.456 (A·min.)/g으로 43% 향상되어 매우 우수하였다. 충-방전 효율은 100회 사이클까지는 각각 1회 사이클을 기준으로 73%와 75.6%를 나타내어 약 3%의 미세한 차이를 보이지만, 100회 사이클에서는 각각 66%와 76%를 보여 10%이상 큰 차이를 나타내었다.
Capacitive deionization(CDI) process kinds of electrochemical adsorption method was employed in order to solve the water deficient problems. In our study, porous activated carbon-silica gel composite electrodes with high wet-ability and mechanical strengths are invented by paste rolling method in our laboratory and investigated electrochemical characteristics such as current changed values as a function of time, coulombs, specific coulombs and chargedischarge efficiencies as a function of cycles until 10th and 100th cycles in 1,000 ppm NaCl solution. Porous activated carbon-silica gel composite electrodes showed efficient CDI performances with decreasing active material usages and increasing wet-ability, mechanical strengths in NaCl solutions. In our electrochemical runs, all of the activated carbonsilica gel composite electrodes also showed good cyclic-ability without destroy of active materials during cycles. The electrode-manufacturing times decreased by 50%. Average specific charge-coulombs by 100th cycles are also appeared very higher 0.456(C composite electrode) than 0.317 (A·min.)/g(A electrode). The charge-discharge efficiencies by 100th cycles are showed good cycle-ability and appeared over 73% and 75.6% in case of A electrode and C composite electrode. However, at the 100th cycles, 76% of charge-discharge efficiencies is showed in C composite electrode but 66% of charge-discharge efficiencies is showed in A electrode.
Keywords
References
Trainham JA, Newman J, J. Electrochem. Soc., 124(10), 1528 (1977)
Blaedel WJ, Wang JC, Anal. Chem., 51(7), 799 (1979)
Matlosz M, Newman J, J. Electrochem. Soc., 133(9), 1850 (1986)
Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF, J. Electrochem. Soc., 143(1), 159 (1996)
Lawrence WH, J. Non-Cryst. Solids, 225(1), 335 (1998)
Andelman MD, "Flow-Though Capacitor," U.S.Patent No. 5,415,768 (1995)
Farmer JC, "Method and Apparatus for Capacitive Deionization, Electrochemical Purification, and Regeration of Electrodes," U.S.Patent No. 5,425,858 (1995)
Arnold BB, Murphy GW, J. Phys. Chem., 65(1), 135 (1961)
Caudle DD, Tucker JH, Cooper JL, Arnold BB, R&D Progress Report 188, USDOI, May (1966)
Farmer JC, Bahowick SM, Harrar JE, Fix DV, Martinelli RE, Vu AK, Carroll KL, Energy Fuels, 11(2), 337 (1997)
Kanbara T, Nishimura K, Yamamoto T, J. Power Sources, 32(2), 165 (1990)
Blaedel WJ, Wang JC, Anal. Chem., 51(7), 799 (1979)
Matlosz M, Newman J, J. Electrochem. Soc., 133(9), 1850 (1986)
Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF, J. Electrochem. Soc., 143(1), 159 (1996)
Lawrence WH, J. Non-Cryst. Solids, 225(1), 335 (1998)
Andelman MD, "Flow-Though Capacitor," U.S.Patent No. 5,415,768 (1995)
Farmer JC, "Method and Apparatus for Capacitive Deionization, Electrochemical Purification, and Regeration of Electrodes," U.S.Patent No. 5,425,858 (1995)
Arnold BB, Murphy GW, J. Phys. Chem., 65(1), 135 (1961)
Caudle DD, Tucker JH, Cooper JL, Arnold BB, R&D Progress Report 188, USDOI, May (1966)
Farmer JC, Bahowick SM, Harrar JE, Fix DV, Martinelli RE, Vu AK, Carroll KL, Energy Fuels, 11(2), 337 (1997)
Kanbara T, Nishimura K, Yamamoto T, J. Power Sources, 32(2), 165 (1990)