ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 20, 2004
Accepted September 17, 2004
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

TiO2 수용상에서의 광촉매반응에 대한 pH, 양이온, 음이온, 용존산소, 자외선 및 유기물의 영향

Effect of pH, Anions, Cations, DO, UV and Organics on the Photocatalytic Reaction in TiO2 Slurry

한국원자력연구소, 305-353 대전시 유성구 덕진동 150 1부산대학교 소재기술연구소, 609-701 부산시 금정구 장전동 산30 2경상대학교 재료공학부 공학연구원, 660-701 경남 진주시 가좌동 900
Korea Atomic Energy Research Institute, 150, Duckjin-dong, Yusong-gu, Daejeon 305-600, Korea 1The Institute for Materials Technology, Busan National Univ., 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea 2Engineering Research Institute, Div. of Material Sci. & Eng., Gyeongsang National Univ., 900, Gajwa-dong, Jinju 660-701, Korea
nkwkim@kaeri.re.kr
Korean Chemical Engineering Research, December 2004, 42(6), 762-770(9), NONE Epub 11 January 2005

Abstract

물에 분산된 광촉매 TiO2 분말에 대하여, 광촉매 활성도에 영향을 미치는 여러 실험조건과 광촉매 분해능과의 상관관계를 여러 제조사의 광촉매 분말에 대하여 관찰하였다. 수용상의 pH와 유기물 분해능의 상관관계에 있어서 pH 5-7에서 분해율이 가장 높게 나타났으며 그 외 pH 영역에서는 유기물 분해율이 크게 감소하였다. 수용상에 존재하는 음이온과 양이온은 그 이온농도와 광촉매 종류에 따라서 분해율이 달라짐을 보여주었다. 용존 산소는 전자를 제거하는 효과로 추측되는 현상으로 인하여 광분해 효율을 증가시켰으며, 조사되는 UV 광원의 파장에 따라 광촉매 시료들에 대한 유기물 분해율 특성은 영향을 받았다. 본 연구에 사용된 특정한 광촉매 시료는 분해 유기물의 종류 및 실험조건에 상관없이 항상 우월한 유기물 분해능을 보여주지 않아, 수용상에 분산된 광촉매 분말의 유기물 분해반응은 그 광촉매가 접하는 실험 환경에 따라 매우 민감하게 분해능이 달라짐을 알 수 있었다.
With respect to the photocatalytic TiO2 powder dispersed in the water, the relationship between the experimental conditions influencing photocatalytic activities and the degree of decomposition were examined for the various sources of photocatalytic powder. For the relationship between pH and level of organic decomposition, a high degree of decomposition was shown in the range of pH 5 to 7, whereas the activity was significantly reduced out of the range. The cations and anions contained in the slurry also affected the decomposition depending on their concentrations and the sources of photocatalytic TiO2 powder. Dissolved oxygen enhanced the degree of decomposition. This might be due to the effect of oxygen acting as an electron scavenger. The destruction yields of 4CP with the photocatalytic TiO2 powders were affected by the wavelength of irradiated UV light on the TiO2 powder. One particular source of TiO2 powder has not always shown superior activities irrespective of kinds of target organics and experimental conditions. These showed that the degree of organic decomposition by the photocatalytic TiO2 powders dispersed in the water varied significantly, depending on the environmental conditions the photocatalyst was surrounded.

References

Serpone N, Pelizzetti E, Photocatalysis, Fundamentals and Applications, John Wiley and Sons., N.Y. (1989)
Lu GQ, Linsebigler A, Yates JT, J. Phys. Chem., 98(45), 11733 (1994) 
Kurtz RL, Stockbauer R, Madey TE, Surf. Sci., 218, 178 (1989) 
Bourgeois S, Jomard F, Perdereau M, Surf. Sci., 279, 349 (1992) 
Hugenschmidt MB, Gamble L, Campbell CT, Surf. Sci., 302, 329 (1994) 
Pelizzetti E, Minero C, Electrochim. Acta, 38, 47 (1993) 
Smith PB, Bernasek SL, Surf. Sci., 188, 241 (1987) 
Yang T, Wan W, J. Photochem. Photobiol. A-Chem., 69, 241 (1992) 
Muraki H, Saji T, Fujihira M, Aoyagui S, J. Electroanal. Chem., 169, 319 (1984) 
Matsumoto Y, Shimuzu T, Sato E, Electrochim. Acta, 27, 419 (1982) 
Bard AJ, J. Photochemistry., 10, 59 (1979) 
Jung KY, Park SB, Appl. Catal. B: Environ., 25(4), 249 (2000) 
Zane D, Decker F, Razzini G, Electrochim. Acta, 38, 37 (1993) 
Gerischer H, Electrochim. Acta, 38, 3 (1993) 
Litter MI, Appl. Catal. B: Environ., 23(2-3), 89 (1999) 
Hagfeldt A, Gratzel M, Chem. Rev., 95(1), 49 (1995) 
Kim KW, Lee EH, Kim YJ, Lee MH, Kim KH, Shin DW, HWAHAK KONGHAK, 41(2), 152 (2003)
Kim KW, Lee EH, Kim YJ, Lee MH, Shin DW, HWAHAK KONGHAK, 41(2), 160 (2003)
Kim KW, Lee EL, Kim YJ, Lee MH, Shin DW, J. Photochem. Photobiol. A-Chem., 161, 11 (2003) 
Kim KW, Lee EL, Kim YJ, Lee MH, Kim KH, Shin DW, J. Photochem. Photobiol. A-Chem., 159, 301 (2003) 
Vinodgopal K, Wynkoop DE, Kamat PV, Environ. Sci. Technol., 30(5), 1660 (1996) 
Anpo M, Aikawa N, Kubokawa Y, J. Phys. Chem., 88, 3998 (1984) 
Pelizzetti E, Maurino V, Minero C, Carkin V, Pramauro E, Zerbinati O, Tosato ML, Environ. Sci. Technol., 24(10), 1559 (1990) 
Jacoby WA, Nimlos MR, Blake DM, Environ. Sci. Technol., 28(9), 1661 (1994) 
Dibble LA, Raupp GB, Environ. Sci. Technol., 26(3), 492 (1994) 
D'Oliveira JC, Al-Sayyed G, Pichat P, Environ. Sci. Technol., 24(7), 990 (1994) 
Matthews RW, J. Phys. Chem., 92, 6853 (1988) 
Theurich J, Linder M, Bahnemann DW, Langmuir, 12(6), 6368 (1996) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로