Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 8, 2004
Accepted October 18, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
저온 플라즈마 공정에 의한 효율적인 탈황 및 탈질
Efficient Desulfurization and Denitrification by Low Temperature Plasma Process
강원대학교 화학공학과, 200-701 강원도 춘천시 효자2동 192-1
Department of Chemical Engineering, Kangwon National University, 192-1, Hyoza-2-dong, Chunchon, Kangwon-do 200-701, Korea
Korean Chemical Engineering Research, February 2005, 43(1), 129-135(7), NONE Epub 4 March 2005
Download PDF
Abstract
본 연구에서는 펄스 코로나 방전 공정에 의해 SO2와 SO2/NO의 제거효율을 분석하였으며, 여러 공정변수가 제거효율에 끼치는 영향을 체계적으로 조사하였다. 공정변수로서 인가전압, 펄스 주파수, 체류시간, 반응물의 초기 농도(NO, SO2, NH3, H2O and O2)의 영향을 분석하였다. 인가되는 전압, 펄스 주파수 또는 체류시간이 증가함에 따라 또는 O2와 H2O가 첨가됨에 따라 SO2의 제거효율과 SO2/NO의 동시 제거효율은 증가하였다. 또한, NH3의 초기 농도가 증가할수록 SO2/NO의 제거효율은 증가하였다. 이 실험적인 결과들은 NOx와 SOx를 제거하기 위한 펄스 코로나 방전 공정장치 설계의 기초 자료로 사용될 수 있다.
In this study, we have analyzed the removal efficiencies of SO2 and SO2/NO by the pulsed corona discharge process and investigated the effects of several process variables on those removal efficiencies systematically. The effects of process variables such as applied voltage, pulse frequency, residence time, and initial concentrations of reactants (NO, SO2, NH3, H2O, and O2) on the removal efficiency were analyzed. As the applied voltage, the pulse frequency or the residence time increases or as the O2 or the H2O or the NH3 concentration in the inlet feed gas stream increases, the SO2 removal efficiencies and the simultaneous removal efficiencies of SO2/NO also increase. These experimental results can be used as a basis to design the pulsed corona discharge process to remove NOx and SOx.
References
Clements JS, Mizuno A, Wright CF, Davis RH, IEEE Trans. Ind. Appl., 25(1), 63 (1989)
Chang JS, Lawless PA, Yamanoto T, IEEE Trans. Ind. Appl., 19(6), 1152 (1991)
Tas MA, Vanhardeveld R, Vanveldhuizen EM, Plasma Chem. Plasma Process., 17(4), 371 (1997)
Masuda S, Hosokawa S, IEEE Trans. Ind. Appl., 29(4), 781 (1993)
Nunez CM, Ramsey GH, Ponder WH, AbbottJames H, Hamel L, Air & Waste, 43(2), 242 (1993)
Tas MA, Vanhardeveld R, Vanveldhuizen EM, Plasma Chem. Plasma Process., 17(4), 371 (1997)
van Veldhuizen EM, Zhou LM, Rutgers WR, Plasma Chem. Plasma Process., 18(1), 91 (1998)
Yan W, Wang N, Zhu Y, Zhang Y, J. Electrostatics, 44(1), 11 (1998)
Oda T, Yamashita R, Takahashi T, Masuda S, IEEE Trans. Ind. Appl., 32(2), 227 (1996)
Urashima K, Chang JS, Ito T, IEEE Trans. Ind. Appl., 33(4), 879 (1997)
Mok YS, Nam IS, Chem. Eng. J., 85(1), 87 (2002)
Bromberg L, Cohn DR, Rabinovich A, Int. J. Veh. Des., 25(4), 275 (2001)
Nishikawa K, Nojima H, Jpn. J. Appl. Phys., 40(8), 835 (2001)
Amirov RH, Chae JO, Dessiaterik YN, Filimonova EA, Zhelezniak MB, Jpn. J. Appl. Phys., 37(6), 3521 (1998)
Park JY, Kim IK, Koh HS, Kim JD, Lee DC, Chang JS, Trans. KIEE., 47(11), 1979 (1998)
Kim YH, Hong SH, Ungyong Mulli, 11(4), 393 (1998)
Dinelli GL, Civitano M, IEEE Trans. Ind. Appl., 26(4), 535 (1990)
Kim DJ, Choi YR, Kim KS, Plasma Chem. Plasma Process., 21(4), 625 (2001)
Kim DJ, Kim KS, IEEE Trans. Plasma Sci., 31(2), 227 (2003)
Park JH, Kim DJ, Kim KS, HWAHAK KONGHAK, 40(3), 351 (2002)
Chang JS, Pontiga F, Atten P, Castellanos A, IEEE Trans. Ind. Appl., 32(6), 1250 (1996)
Chang MB, Balbach JH, Rood MJ, Kushner MJ, J. Appl. Phys., 69(8), 4409 (1991)
Chang JS, Lawless PA, Yamanoto T, IEEE Trans. Ind. Appl., 19(6), 1152 (1991)
Tas MA, Vanhardeveld R, Vanveldhuizen EM, Plasma Chem. Plasma Process., 17(4), 371 (1997)
Masuda S, Hosokawa S, IEEE Trans. Ind. Appl., 29(4), 781 (1993)
Nunez CM, Ramsey GH, Ponder WH, AbbottJames H, Hamel L, Air & Waste, 43(2), 242 (1993)
Tas MA, Vanhardeveld R, Vanveldhuizen EM, Plasma Chem. Plasma Process., 17(4), 371 (1997)
van Veldhuizen EM, Zhou LM, Rutgers WR, Plasma Chem. Plasma Process., 18(1), 91 (1998)
Yan W, Wang N, Zhu Y, Zhang Y, J. Electrostatics, 44(1), 11 (1998)
Oda T, Yamashita R, Takahashi T, Masuda S, IEEE Trans. Ind. Appl., 32(2), 227 (1996)
Urashima K, Chang JS, Ito T, IEEE Trans. Ind. Appl., 33(4), 879 (1997)
Mok YS, Nam IS, Chem. Eng. J., 85(1), 87 (2002)
Bromberg L, Cohn DR, Rabinovich A, Int. J. Veh. Des., 25(4), 275 (2001)
Nishikawa K, Nojima H, Jpn. J. Appl. Phys., 40(8), 835 (2001)
Amirov RH, Chae JO, Dessiaterik YN, Filimonova EA, Zhelezniak MB, Jpn. J. Appl. Phys., 37(6), 3521 (1998)
Park JY, Kim IK, Koh HS, Kim JD, Lee DC, Chang JS, Trans. KIEE., 47(11), 1979 (1998)
Kim YH, Hong SH, Ungyong Mulli, 11(4), 393 (1998)
Dinelli GL, Civitano M, IEEE Trans. Ind. Appl., 26(4), 535 (1990)
Kim DJ, Choi YR, Kim KS, Plasma Chem. Plasma Process., 21(4), 625 (2001)
Kim DJ, Kim KS, IEEE Trans. Plasma Sci., 31(2), 227 (2003)
Park JH, Kim DJ, Kim KS, HWAHAK KONGHAK, 40(3), 351 (2002)
Chang JS, Pontiga F, Atten P, Castellanos A, IEEE Trans. Ind. Appl., 32(6), 1250 (1996)
Chang MB, Balbach JH, Rood MJ, Kushner MJ, J. Appl. Phys., 69(8), 4409 (1991)