Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 14, 2004
Accepted November 2, 2004
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
GC/microreactor를 이용한 소성온도에 따른 CuO-Fe2O3 흡수제의 탈황성능
Desulfurization Ability of CuO-Fe2O3 Sorbents with Respect to the Calcination Temperature by GC/microreactor
충남대학교 화학공학과, 305-764 대전시 우성구 궁동220
Department of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-gu, Daejeon 305-764, Korea
Korean Chemical Engineering Research, February 2005, 43(1), 140-145(6), NONE Epub 4 March 2005
Download PDF
Abstract
본 연구에서는 주 반응물질로 CuO를 사용하고, Fe2O3의 함량을 7.5 wt%, 15 wt%, 22.5 wt%로 변화시키고, 지지체 SiO2의 함량을 25 wt%로 고정하여 흡수제를 제조하였다. 특히 소성온도의 변화에 따른 흡수제의 탈황성능의 변화를 조사하기 위하여, 흡수제의 소성 온도를 700, 900 그리고 1.100 ℃로 달리하여 흡수제를 제조하였다. 제조된 흡수제는 GC/소형반응기를 이용하여 사이클 실험을 하였으며, 이때 흡수제의 황화온도는 500 ℃, 재생온도는 700 ℃로 하였다. 반응 전후의 XRD 분석을 통하여 화합물의 형태를 확인하였으며, BET 분석을 통하여 소성온도의 변화에 따른 흡수제의 표면적 변화를 조사하였다. 또한, 장기사이클에서 700 ℃에서 소성된 CFS3 흡수제(CuO : Fe2O3 : SiO2=52.5 wt% : 22.5 wt% : 25 wt%)의 H2O 유/무에 따른 탈황성능의 변화를 확인하였다. 그 결과 소성온도에 따른 비표 면적의 변화는 크게 나타나지 않았다. 또한, 장기사이클에서 H2O에 의한 탈황성능의 저하를 확인할 수 있었다. 특히 1,100 ℃에서 소성된 CFS1 흡수제(CuO:Fe2O3:SiO2=67.5 wt% : 7.5 wt% : 25 wt%)의 경우에는 H2O가 존재함에도 불구하고, 100 사이클이 지난 후에도 흡수제 100 g당 10 g의 황을 제거할 수 있는 탈황성능을 보였다._x000D_
The desulfurization abilities using GC/microreactor have been examined for CuO-Fe2O3 sorbents with respect to calcination temperatures of 700, 900 and 1,100 ℃. CuO was used as a main active component, Fe2O3 was used as an additive one and 25 wt% SiO2 was used as a support. The desulfurization reaction temperature was 500 ℃ and the regeneration reaction temperature was 700 ℃. From the XRD results, the CuFeO2 compound has been observed for the fresh sorbent calcined at 1,100 ℃ and the CuFeS2 compound for the reacted sorbent calcined at 1,100 ℃. By the BET results, however any significant differences among sorbents calcined at the three different temperatures of 700, 900 and 1,100 ℃ haven’t been observed. Especially CFS1 (CuO : Fe2O3 : SiO2=67.5 wt% : 7.5 wt% : 25 wt%) sorbent calcined at 1,100 ℃ maintained about 10 g sulfur/100 g sorbent for 100 cycles by the cyclic test.
References
Ryu CK, Wee YH, Lee JB, Lee YK, Chem. Ind. Technol., 16(1), 17 (1998)
Moon SJ, Ihm SK, Korean J. Chem. Eng., 11(2), 111 (1994)
Lee TJ, Kwon WT, Chang WC, Kim JC, Korean J. Chem. Eng., 14(6), 513 (1997)
Kang SH, Rhee YW, Kang Y, Han KH, Lee CK, Jin GT, HWAHAK KONGHAK, 35(5), 642 (1997)
Park DH, Lee YS, Kim HT, Yoo KO, HWAHAK KONGHAK, 30(6), 700 (1992)
Jeon GS, Chung JS, Korean J. Chem. Eng., 12(1), 132 (1995)
Westmoreland PW, Harrison DP, Environ. Sci. Technol., 10(7), 659 (1976)
Ayala RE, Venkataramani VS, Javad A, Hill AH, "Advanced Low-Temperature Sorbent", Proceedings of the Advanced Coal-Fired Power Systems Sorbent 95 Review Meeting, 1, 407-416 (1997)
Kyotani T, Kawashima H, Tomita A, Palmer A, Furimsky E, Fuel, 68(1), 74 (1989)
Patrick V, Gavalas GR, Ind. Eng. Chem. Res., 28(7), 931 (1989)
Yi KB, Choi EM, Song YK, Rhee YW, HWAHAK KONGHAK, 37(5), 795 (1999)
Song YK, Lee KB, Lee HS, Rhee YW, Korean J. Chem. Eng., 17(6), 691 (2000)
Pineda M, Palacios JM, Alonso L, Garcia E, Moliner R, Fuel, 79(8), 885 (2000)
Slimane RB, Abbasian J, Fuel Process. Technol., 70(2), 97 (2001)
Lee HS, Kang MP, Song YS, Lee TJ, Rhee YW, Korean J. Chem. Eng., 18(5), 635 (2001)
Gasper-Galvin LD, Atimtay AT, Gupta RP, Ind. Eng. Chem. Res., 37(10), 4157 (1998)
Moon SJ, Ihm SK, Korean J. Chem. Eng., 11(2), 111 (1994)
Lee TJ, Kwon WT, Chang WC, Kim JC, Korean J. Chem. Eng., 14(6), 513 (1997)
Kang SH, Rhee YW, Kang Y, Han KH, Lee CK, Jin GT, HWAHAK KONGHAK, 35(5), 642 (1997)
Park DH, Lee YS, Kim HT, Yoo KO, HWAHAK KONGHAK, 30(6), 700 (1992)
Jeon GS, Chung JS, Korean J. Chem. Eng., 12(1), 132 (1995)
Westmoreland PW, Harrison DP, Environ. Sci. Technol., 10(7), 659 (1976)
Ayala RE, Venkataramani VS, Javad A, Hill AH, "Advanced Low-Temperature Sorbent", Proceedings of the Advanced Coal-Fired Power Systems Sorbent 95 Review Meeting, 1, 407-416 (1997)
Kyotani T, Kawashima H, Tomita A, Palmer A, Furimsky E, Fuel, 68(1), 74 (1989)
Patrick V, Gavalas GR, Ind. Eng. Chem. Res., 28(7), 931 (1989)
Yi KB, Choi EM, Song YK, Rhee YW, HWAHAK KONGHAK, 37(5), 795 (1999)
Song YK, Lee KB, Lee HS, Rhee YW, Korean J. Chem. Eng., 17(6), 691 (2000)
Pineda M, Palacios JM, Alonso L, Garcia E, Moliner R, Fuel, 79(8), 885 (2000)
Slimane RB, Abbasian J, Fuel Process. Technol., 70(2), 97 (2001)
Lee HS, Kang MP, Song YS, Lee TJ, Rhee YW, Korean J. Chem. Eng., 18(5), 635 (2001)
Gasper-Galvin LD, Atimtay AT, Gupta RP, Ind. Eng. Chem. Res., 37(10), 4157 (1998)