ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 18, 2004
Accepted December 30, 2004
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

SNCR 공정에서 Sodium Salts 첨가제를 이용한 탈질반응 개선에 관한 연구

The Improvement of Denitrofication by Using Sodium Salts in the SNCR Process

연세대학교 화학공학 & CT연구소, 120-749 서울시 서대문구 신촌동 134 1(주)대우건설 기술연구소, 440-210 경기도 수원시 장안구 송죽동 24
Department of Chemical Engineering & Center for Clean Technology, Yonsei Universi, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749, Korea 1Institute of Daewoo E&C Co., 24, Songjuk-dong, Jangan-gu, Swuon, Kyungki-do 440-210, Korea
Korean Chemical Engineering Research, April 2005, 43(2), 324-329(6), NONE Epub 9 May 2005
downloadDownload PDF

Abstract

본 연구에서 SNCR 공정에서 사용되는 NO의 농도는 500 ppm이며, 환원제로 Urea를 사용하였다. 또한 첨가제로 NaOH(sodium hydroxide), Na2CO3(sodium cabonate), NaNO3(sodium nitrate), HCOONa(sodium formate), CH3COONa (sodium acetrate)를 이용하여 온도와 첨가제에 따른 NO 저감 효율을 측정하고자 하였다. 이때의 NO 저감 온도의 범위는 650-1,050 ℃이다. 환원제만 사용하였을 경우, NO의 저감 효율은 44%까지 증가하였으며, 환원제와 첨가제(NaOH) 를 0.5 mol/L와 1 mol/L 사용하였을 경우, NO 저감 효율은 25%와 74%이상 증가하였다. 첨가제를 사용하지 않았을 경우보다 첨가제를 사용하였을 경우 NO의 저감 효율은 증가하였다. 또한 NaOH>Na2CO3>NaNO3>HCOONa, >CHCOONa 첨가제의 순으로 효율이 우수하였다. 첨가제를 사용할 경우 약 900 ℃에서 1,050 ℃의 온도범위에서 NO저감 효율이 65% 이상으로 나타났다. 온도 창의 범위는 약 250 oC의 범위로 나타났으며, 최저 효율은 약 20%이며 최대효율은 약 74%정도로 나타났다.
The efficiency of reducing nitric oxide using urea combined with alkali salt additives is reported in this study. The inlet concentration of NO is 500 ppm with air flow rates of 3 and 5 L/min. Reduction of NO was studied from 650 to 1,050 ℃ with urea concentrations of 0.3 to 1 mol/L. The efficiency for the reduction of NO increased by 44% when urea is added alone. A further increase in efficiency was observed in the presence of NaOH as additive in fact, the efficiency was increased by more than 25% and 75% when 0.5 mol/L and 1 mol/L NaOH were added with the urea. The efficiency for the reduction of NO increased with all additives, but descended in the order NaOH, Na2CO3, NaNO3, HCOONa, and CHCOONa. The maximum efficiency of NaOH and Na2NO3 are 74% and 73%, respectively. All these additives did not alter the comparatively wide operating temperature window for reducing NO. However, sodium compounds do not shift the maximum NO concentration towards lower temperatures when the NO removal activity enhances.

References

Lee JH, Lee DH, Kang HC, J. Korea Society of Waste Management, 21(3), 181 (2004)
Brouwer J, Heap MP, Pershing DW, Smith PJ, "A Model for Prediction of Selctive Non-Catalytic Reduction of Nitrogen Oxides by Ammonia, Urea, and Cyanuric Acid with Moxing Limitation in the presence of CO", SNCR paper for 26th Symposium (2004)
Lee SH, Kim KL, NERI, 6(1), 163 (2001)
Choi SW, Choi SK, NERI, 6(1), 203 (2001)
Tchobanoglous G, Theisen H, Vigil SA, "Integrated Solid Waste Management", McGRAW-HILL, 644-650 (2001)
Moon SH, Lee IC, Choi IS, Kim SC, Choi BC, Chem. Ind. Technol., 5(4), 62 (1978)
Korea Institute of Energy Research, "Development of High Efficient Process for Simultaneous Removal of SOx and NOx Removal from Flue Gas(II)", MOST (1992)
Kwon HB, Kim HT, "State of Stationary Combustion Nitrogen Oxide Control Technologies", Environment Research Institute. Kyungnam Univ., 20, 151-187 (1987)
Choi WG, Lee IC, Choi IS, Chem. Ind. Technol., 6(4), 62 (1988)
Choi WG, Lee IC, Choi IS, Chem. Ind. Technol., 7(4), 62 (1989)
Tree DR, Clark AW, Feul, 79(13), 1687 (2000)
Muzio LJ, Quartucy GC, Prog. Energy Combust. Sci., 23(3), 233 (1997) 
Ostberg M, Damjohansen K, Johnsson JE, Chem. Eng. Sci., 52(15), 2511 (1997) 
Jeong SK, Hong SC, J. Korean Ind. Eng. Chem., 12(8), 841 (2001)
Ham SW, Park HH, Mok YS, HWAHAK KONGHAK, 37(5), 759 (1999)
Bilbao R, Oliva M, Ibanez JC, Zapater A, Millera A, Alzueta MU, "The Use of Urea as Selective Non-Catalytic Reduction Agent to Reduce NOx Emissions", Proceedings of the ICCS' 97, Essen, Germany, 1863-1866 (1997)
Alzueta MU, Bilbao R, Millera A, Oliva M, Ibanez JC, Energy Fuels, 12(5), 1001 (1998) 
Chang MB, The Sci. Environ., 198(1), 73 (1997)
Rota R, Zanoelo EF, Fuel, 82(7), 765 (2003) 
Rota R, Zanoelo EF, Antos D, Morbidelli M, Carra S, Chem. Eng. Sci., 55(6), 1041 (2000) 
Brown SS, Berghout HL, Crim FF, J. Chem. Phys., 105(18), 8103 (1996) 
Taraneh NI, "theoretical Study on the Mechanism of Removing Nitrogen Oxides Using Isocyanic Acid", MS. D. Dissertation, East Tennessee State Univ., U.S.A. (2001)
Mirosla R, Environ. Pollut., 102(1), 685 (1998) 
Kristensen PG, Glarborg P, DamJohansen K, Combust. Flame, 107(3), 211 (1996) 
Peter G, Per GK, Sren HJ, Kim DJ, Combust. Flame, 98(3), 241 (1994) 
Zamansky VM, Lissianski VV, Maly PM, Ho L, Rusli D, Gardiner WC, Combust. Flame, 117(4), 821 (1999) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로