ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 27, 2004
Accepted April 15, 2005
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

텅스텐 기판 위에 구리 무전해 도금에 대한 연구

A Study of Copper Electroless Deposition on Tungsten Substrate

전북대학교 화학공학부, 561-756 전북 전주시 덕진구 덕진동 1가 664-14 1민족사관고등학교, 225-823 강원도 횡성군 안흥면 소사리 1334
School of Chemical Engineering, Chonbuk National University, 664-14 Dukjin-dong 1 Ga, Duckjin-gu, Jeonbuk 561-756, Korea 1Korean Minjok Leaders Academy, 1334 Sosa-rhee, Anheung-myun, Hoengsung-gun, Kangwon-do 225-823, Korea
hsshin@chonbuk.ac.kr
Korean Chemical Engineering Research, August 2005, 43(4), 495-502(8), NONE Epub 26 September 2005
downloadDownload PDF

Abstract

무전해 도금 용액을 이용하여 구리를 직접 텅스텐(Tungsten, W) 기판 위에 도금하였다. 도금 용액의 농도는 각각 CuSO4 7.615 g/L, EDTA 10.258 g/L, glyoxylic acid 7 g/L로 하였다. 도금 용액의 pH는 11.0에서 12.8까지 변화시켰으며, 용액의 온도는 60℃로 유지하였다. 도금된 필름의 특성을 조사하기 위하여 X선 회절분석기, 전계 방출 주사 전자 현미경, 주사형 원자력 현미경, X선 광전자 분석기 및 Rutherford backscattering spectroscope(RBS)를 사용하였다. 구리 도금을 위한 가장 좋은 pH 조건은 11.8이였다. 이 용액에서 10분 동안 도금한 경우 둥근 모양의 구리 입자가 균일하게 도금되었으며, 불순물 peak이 없는 순수 구리 peak이였고, 근평균 제곱 표면 거칠기는 약 11 nm가 되었다. 또한, pH 11.8에서 12분 동안 도금한 필름의 두께는 140 nm이었고 도금속도는 약 12 nm/min였다. 무전해 도금 용액의 pH를 12.8로 증가시키면 도금된 구리 필름은 Cu peak 이외에 불순물 peak인 Cu2O가 나타나고 구리 입자 모양도 기다란 직사각형 모양으로 변하였다. 순수 구리의 도금을 위해서는 도금 용액에서 적당한 pH를 유지하여야 한다. 도금된 구리의 농도는 RBS로 측정한 결과 99 atom%였다. 또한, Cu/W 필름은 전기 도금하는 동안 합금 형태를 이루기 때문에 접착성도 좋았다.
Copper was plated on the tungsten substrate by use of a direct copper electroless plating. The optimum deposition conditions were found to be with a concentration of CuSO4 7.615 g/L, EDTA of 10.258 g/L, and glyoxylic acid of 7 g/L, respectively. The solution temperature was maintained at 60℃. The pH was varied from 11.0 to 12.8. After the deposition, the properties of the copper film were investigated with X-ray diffractometer (XRD), Field emission secondary electron microscope (FESEM), Atomic force microscope (AFM), X-ray photoelectron spectroscope (XPS), and Rutherford backscattering spectroscope (RBS). The best deposition condition was founded to be the solution pH of 11.8. In the case of 10 min deposition at the pH of 11.8, the grain shape was spherical, Cu phase was pure without impurity peak (Cu2O peak), and the surface root mean square roughness was about 11 nm. The thickness of the film turned out to be 140 nm after deposition for 12 min and the deposition rate was found to be about 12 nm/min. Increase in pH induced a formation of Cu2O phase with a long rectangular grain shape. The pH control seems to play an important role for the orientation of Cu in electroless deposition. The deposited copper concentration was 99 atomic percent according to RBS. The resulting Cu/W film yielded a good adhesive strength, because Cu/W alloy forms during electroless deposition.

References

"International Technology Roadmap for Semiconductors" (2003)
Andricacos PC, The electrochemical Society Interface-spring, 32 (1999)
Honma H, Kobayashi T, J. Electrochem. Soc., 141(3), 730 (1994) 
Shacham-Diamand Y, Dubin VM, Microelectronic Engineering, 33, 47 (1997) 
Shacham-Diamand Y, Electrochem. Solid State Lett., 3(6), 279 (2000) 
Wang Z, Ida T, Sakaue H, Shingubara S, Takahagi T, Electrochem. Solid State Lett., 6(3), C38 (2003) 
Kim JJ, Kang MS, HWAHAK KONGHAK, 39(6), 721 (2001)
Pourbaix M, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press (1966)
Angal M, Shacham-Diamand Y, Mak C, Miller B, Feldman L, Proceedings-Electrochemical Society, 93(25), 204 (1993)
Kennedy RM, Minten K, J. Vac. Sci. Technol. B, 9(2), 735 (1991) 
Young CC, Duh JG, Huang CS, Surf. Coat. Technol., 145, 215 (2001) 
Moulder JF, Stickle WF, Sobol PE, Bomben KD, "Handbook of X-Ray Photoelectron Spectroscopy", Physical Electronics, Eden Praire (1992)
Sohn JR, Bae JH, Korean J. Chem. Eng., 17(1), 86 (2000)
Lowenheim FA, "Modern Electroplating", 3rd. ed., John wiley & sons, New York, 734 (1974)
Zhang R, Gao L, Jingkun G, Surf. Coat. Technol., 166, 67 (2003) 
Shu J, Grandjean BPA, Kaliaguine S, Ind. Eng. Chem. Res., 36(5), 1632 (1997) 
Kim JJ, Cha SH, Lee YS, Jpn. J. Appl. Phys., 42, L953 (2003) 
Baumann SA, Strathman MD, Steven L, Suib SL, Anal. Chem., 60, 1046 (1998) 
Doolittle LR, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 9(3), 344 (1985) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로