Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 27, 2004
Accepted June 13, 2005
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
졸-겔법으로 제조된 복합 알루미나 미분체의 첨가제에 의한 구조적 특성 비교
A Comparison of Structural Characterization of Composite Alumina Powder Prepared by Sol-Gel Method According to the Promoters
Jung-Woon Lee
Ho-Sung Yoon1
U-Suk Chae
Han-Jin Park
Un-Yeon Hwang
Hyung-Sang Park
Dal-Ryung Park2
Seung-Joon Yoo3†
서강대학교 화학공학과, 121-742 서울시 마포구 신수동 1 1한국지질자원연구원 자원활용연구부, 305-350 대전시 유성구 가정동 30 2한국가스공사 연구개발원 LNG기술연구센타, 406-130 인천시 연수구 동춘동 973 3서남대학교 환경화학공학부, 590-711 전북 남원시 광치동 720
Department of Chemical Engineering, Sogang University, 1, Shinsu-dong, Mapo-gu, Seoul 121-742, Korea 1Division of Minerals Utilization and Materials, Korea Institute of Geoscience and Mineral Resources, 30, Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea 2LNG Technology Research Center, KOGAS, 973, Dongchun-dong, Yonsu-gu, Inchon 406-130, Korea 3Faculty of Environmental and Chemical Engineering, Seonam University, 720, Kwangchi-dong, Namwon, Chonbuk 590-711, Korea
Korean Chemical Engineering Research, August 2005, 43(4), 503-510(8), NONE Epub 27 September 2005
Download PDF
Abstract
본 연구는 졸-겔법을 이용하여 복합 알루미나를 제조하였고, 다양한 첨가제의 첨가에 의한 복합 알루미나의 열적 안정성을 고찰하였다. 1,200 ℃에서 소성시킨 복합 알루미나의 열적 안정성은 사용된 첨가제에 따라서 Si≒La>Ti>Ba≒Ce>Y>Zr≒Mg 순으로 나타났다. 특히 실리카 첨가시 α-알루미나로의 상전이 온도를 150℃이상 높여 1,200 ℃에서 소성 후에도 γ-형에서 δ-형의 알루미나 상을 유지함을 알 수 있었고, 비표면적이 3m2/g인 α-알루미나에 비해 71 m2/g(비표면적)범위까지 증가됨을 보였다. 이러한 알루미나 입자의 특성변화는 실리카 첨가 알루미나의 경우 고온으로 소성시 Si-O-Al의 결합의 증가로 인하여 알루미나의 상전이를 지연시키는 결과로 나타나고, 란티늄 첨가 알루미나의 경우 LaAlO3 구조의 존재로 인해 알루미나의 입자간 소결을 지연시킴을 알 수 있었다. 또한 란타늄 첨가시 1,000 ℃ 이하에서 소성 시킨 경우 란타늄이 알루미나 표면에 La2O3 구조로 존재하나 1,000 ℃ 이상에서는 LaAlO3 의 perovskite 구조로 존재하고, 1,300 ℃이상에서는 LaAl11O18의 magneto-plumbite 구조로 존재함을 XRD와 XPS 분석 결과에 의해 확인할 수 있었다.
In this research, composite alumina was prepared to add the various promoters by sol-gel method and examined its thermal stability. After sintering at 1,200 ℃, the thermal stability resulted in following order, Si≒La>Ti>Ba≒Ce>Y>Zr≒Mg, in accordance with adding the promoters. Especially in case of silica-added alumina, a phase transformation temperature to α-alumina increased about 150 ℃ and after sintering at 1,200 ℃, it showed to maintain in γ-form and δ-form alumina phase. Also it showed an increase of surface area from 3 m2/g to 71m2/g compared with pure α-alumina. In the case of silica-added alumina, the characterization change of this alumina particle resulted in a delay of phase transformation because Si-O-Al bond was increased when sintered at high temperature. In case of lanthanum-added alumina, there was a sintering delay phenomenon in inter-particles as LaAlO3 structure existed. The existence of lanthanum structure was confirmed by XRD and XPS analysis. It appeared on the alumina surface as La2O3 structure when it was sintered under 1,000 ℃, as the perovskite structure of LaAlO3 at above 1,000 ℃ and as the magneto-plumbite structure of LaAl11O18 at above 1,300℃.
References
Lafarga D, Lafuente A, Menendez F, Santamaria J, J. Membr. Sci., 147(2), 173 (1998)
Schaper H, Doesburg EBM, VanReijen LL, Applied Catalysis, 7(2), 211 (1983)
Yokokawa T, Kleppa OJ, J. Phys. Chem., 68(11), 3246 (1964)
Rossignol S, Kappenstein C, Int. J. Inorg. Mater., 3(1), 51 (2001)
Xue LA, Chen IW, J. Mater. Sci. Lett., 11(8), 443 (1992)
Oudet F, Vejux A, Courtine P, Applied Catalysis, 50(1), 79 (1989)
Church JS, Cant NW, Appl. Catal. A: Gen., 101(1), 105 (1993)
Zou WQ, Gonzalez RD, Appl. Catal. A: Gen., 126(2), 351 (1995)
Ozawa M, Kimura M, J. Mater. Sci. Lett., 9(3), 291 (1990)
Yoo SJ, Lee JW, Hwang UY, Yoon HS, Park HS, HWAHAK KONGHAK, 36(5), 695 (1998)
Yoldas BE, Ceramic Bullentin, 54(3), 286 (1975)
Yoldas BE, Am. Ceram. Soc. Bull., 54(3), 289 (1975)
Peri JB, J. Phys. Chem., 69(1), 211 (1965)
Brunauer S, Deming LS, Deming WS, Teller E, J. Am. Chem. Soc., 62(7), 1723 (1940)
deBoer JH, "The Structure and Properties of Porous Materials", Butterworths, London, 10, 68 (1958)
Bettman M, Chase RE, Otto K, Weber WH, J. Catal., 117(2), 447 (1989)
Schaper H, Doesburg EBM, VanReijen LL, Applied Catalysis, 7(2), 211 (1983)
Schaper H, Doesburg EBM, VanReijen LL, Applied Catalysis, 9(1), 129 (1984)
Schaper H, Doesburg EBM, VanReijen LL, Applied Catalysis, 9(1), 129 (1984)
Chen XY, Liu Y, Niu GX, Yang ZX, Bian MY, He A, Appl. Catal. A: Gen., 205(1-2), 159 (2001)
Schaper H, Doesburg EBM, VanReijen LL, Applied Catalysis, 7(2), 211 (1983)
Yokokawa T, Kleppa OJ, J. Phys. Chem., 68(11), 3246 (1964)
Rossignol S, Kappenstein C, Int. J. Inorg. Mater., 3(1), 51 (2001)
Xue LA, Chen IW, J. Mater. Sci. Lett., 11(8), 443 (1992)
Oudet F, Vejux A, Courtine P, Applied Catalysis, 50(1), 79 (1989)
Church JS, Cant NW, Appl. Catal. A: Gen., 101(1), 105 (1993)
Zou WQ, Gonzalez RD, Appl. Catal. A: Gen., 126(2), 351 (1995)
Ozawa M, Kimura M, J. Mater. Sci. Lett., 9(3), 291 (1990)
Yoo SJ, Lee JW, Hwang UY, Yoon HS, Park HS, HWAHAK KONGHAK, 36(5), 695 (1998)
Yoldas BE, Ceramic Bullentin, 54(3), 286 (1975)
Yoldas BE, Am. Ceram. Soc. Bull., 54(3), 289 (1975)
Peri JB, J. Phys. Chem., 69(1), 211 (1965)
Brunauer S, Deming LS, Deming WS, Teller E, J. Am. Chem. Soc., 62(7), 1723 (1940)
deBoer JH, "The Structure and Properties of Porous Materials", Butterworths, London, 10, 68 (1958)
Bettman M, Chase RE, Otto K, Weber WH, J. Catal., 117(2), 447 (1989)
Schaper H, Doesburg EBM, VanReijen LL, Applied Catalysis, 7(2), 211 (1983)
Schaper H, Doesburg EBM, VanReijen LL, Applied Catalysis, 9(1), 129 (1984)
Schaper H, Doesburg EBM, VanReijen LL, Applied Catalysis, 9(1), 129 (1984)
Chen XY, Liu Y, Niu GX, Yang ZX, Bian MY, He A, Appl. Catal. A: Gen., 205(1-2), 159 (2001)