Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 15, 2005
Accepted September 6, 2005
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
경막형 용융결정화에 의한 파라디옥사논과 디에틸렌글리콜 혼합물로부터 파라디옥사논의 정제
Purification of p-Dioxanone from p-Dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization
한국화학연구원 미세공정기술연구센터, 305-600 대전시 유성구 장동 100 1충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220
Chemical Process and Engineering Center, Korea Research Institute of Chemical Technology, 100, Jang-dong, Yuseong-gu, Daejeon 305-600, Korea 1Department of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-gu, Daejeon 305-764, Korea
cukim@krict.re.kr
Korean Chemical Engineering Research, October 2005, 43(5), 595-602(8), NONE Epub 2 November 2005
Download PDF
Abstract
파라디옥사논에 포함된 주요한 불순물인 디에틸렌글리콜을 제거하기 위해, 파라디옥사논과 디에틸렌글리콜과의 이 성분계 고액 상평형 및 혼합물의 밀도를 측정하였으며, 종(seed)을 이용한 경막 용융결정화 실험을 하였다. 얻어진 2성 분계 고액 상평형 결과는 단순 공융계를 형성하였는데, 공용점은 파라디옥사논의 0.08 몰농도에서 246 K였다. 또한, 혼합물의 밀도 데이터는 ρl=k1+k2x+k3T+k4xT 식과 잘 연관되었으며, 각 파라메타인 k1, k2, k3 및 k4의 값은 0.405, 1.361, 0.002, .0.004이었다. 용융결정화 실험에서 결정 성장속도(G)는 냉각속도가 감소하거나 파라디옥사논의 초기농도가 증가할수록 감소하는 경향을 나타내었으며, 결정 성장속도식은 과냉각 온도의 1.5승에 비례하였다. 또한, 불순물의 제거 정도를 나타내는 유효 분배계수(Keff)는 냉각속도 및 PDX 초기농도가 증가할수록 증가하는 경향을 나타내었으며, 유효분배계수는 Wintermantel 모델에 의해 Keff = .0.0604+6.392×Z 관계로 표현되었다. 최종적으로 얻어진 PDX 순도는 결정화 조작변수를 최적화하여 99% 이상으로 조절할 수 있음을 알 수 있었다.
In order to purify diethylene glycol as main impurity included in p-dioxanone, SLE (solid-liquid equilibria) and mixture density on two components system of p-dioxanone and diethylene glycol were measured and a layered melt crystallization with seed has been applied. The SLE of p-dioxanone and diethylene glycol were a simple eutectic system and the temperature and PDX concentration at eutectic point were 0.08 and 246 K, respectively. Densities of their binary mixtures were well fitted by the best correlation equation, ρl=0.405+1.361x+0.002T.0.004xT. In the melt crystallization, the growth rate (G) was proportional to the 1.5th power of the subcooling degree. The effective distribution coefficient (Keff) as the degree of impurity removal was observed to increase with increasing the growth rate and initial p-dioxanone concentration. And also, Keff was correlated with Z function using Wintermantel’s model such as Keef = .0.0604+6.392×Z. Finally, PDX purity through the optimization of this process can be obtained over 99%.
Keywords
References
Yang KK, Wang XL, Wang YZ, J. Macromolecular Science, C42(3), 373 (2002)
Kim CU, Kim KJ, Cheon YH, "Separation of High Purity p-Dioxanone from p-Dioxanone Reaction Mixtures", Korean Patent No. 2004-0033122 (2004)
Kim CU, Kim SI, Nam SY, Ko JC, Seo YJ, Choi BY, "Purification Method and Apparatus of High Purity p-Dioxanone from Raw p-Dioxanone", Korean Patent No. 2005-0026679 (2005)
Ying J, Conn NH, "Process for the Production of Dioxanone", U.S. Patent No. 5,391,707 (1995)
Moyers CG, Charleston WV, Farr MP, Somerville NJ, "Recovery of Dioxanone by Melt Crystallization", U.S. Patent No. 5,675,022 (1997)
Riddick JA, Bunger WB, Sakano TK, Techniques of Chemistry, Organic Solvents, 4th ed, John Wiley and Sons, New York (1986)
Sloan GJ, McGhie AR, Techniques of Melt Crystallization, New York, John Wiley and Sons (1998)
Nicholas PW, Chem. Eng. Prog., 88(3), 52 (1992)
Matsuoka M, Fukuda T, Takagi Y, Takiyama H, J. Cryst. Growth, 166(1-4), 1035 (1996)
Cheon YH, Kim KJ, Kim JW, Kim SH, J. Chem. Eng. Data, 50(3), 683 (2005)
Kim KJ, Lee JM, Ryu SK, J. Korean Ind. Eng. Chem., 8(3), 389 (1997)
Kim KJ, Kim JW, Kim JK, Cheon YH, J. Korean Ind. Eng. Chem., 13(1), 63 (2002)
Park SJ, Paik SK, J. Korean Ind. Eng. Chem., 9(6), 864 (1998)
Kim KJ, Lee JM, Ryu SK, J. Korean Ind. Eng. Chem., 7(2), 308 (1996)
Sloan GJ, McGhie AR, Techniques of Melt Crystallization, New York, John Wiley and Sons (1998)
Ossipov P, Int. J. Heat Mass Transf., 41(4-5), 691 (1998)
Mersmann A, Crystallization Technology of Handbook, Mercel Dekker (1994)
Kim CU, Kim KJ, Cheon YH, "Separation of High Purity p-Dioxanone from p-Dioxanone Reaction Mixtures", Korean Patent No. 2004-0033122 (2004)
Kim CU, Kim SI, Nam SY, Ko JC, Seo YJ, Choi BY, "Purification Method and Apparatus of High Purity p-Dioxanone from Raw p-Dioxanone", Korean Patent No. 2005-0026679 (2005)
Ying J, Conn NH, "Process for the Production of Dioxanone", U.S. Patent No. 5,391,707 (1995)
Moyers CG, Charleston WV, Farr MP, Somerville NJ, "Recovery of Dioxanone by Melt Crystallization", U.S. Patent No. 5,675,022 (1997)
Riddick JA, Bunger WB, Sakano TK, Techniques of Chemistry, Organic Solvents, 4th ed, John Wiley and Sons, New York (1986)
Sloan GJ, McGhie AR, Techniques of Melt Crystallization, New York, John Wiley and Sons (1998)
Nicholas PW, Chem. Eng. Prog., 88(3), 52 (1992)
Matsuoka M, Fukuda T, Takagi Y, Takiyama H, J. Cryst. Growth, 166(1-4), 1035 (1996)
Cheon YH, Kim KJ, Kim JW, Kim SH, J. Chem. Eng. Data, 50(3), 683 (2005)
Kim KJ, Lee JM, Ryu SK, J. Korean Ind. Eng. Chem., 8(3), 389 (1997)
Kim KJ, Kim JW, Kim JK, Cheon YH, J. Korean Ind. Eng. Chem., 13(1), 63 (2002)
Park SJ, Paik SK, J. Korean Ind. Eng. Chem., 9(6), 864 (1998)
Kim KJ, Lee JM, Ryu SK, J. Korean Ind. Eng. Chem., 7(2), 308 (1996)
Sloan GJ, McGhie AR, Techniques of Melt Crystallization, New York, John Wiley and Sons (1998)
Ossipov P, Int. J. Heat Mass Transf., 41(4-5), 691 (1998)
Mersmann A, Crystallization Technology of Handbook, Mercel Dekker (1994)