Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 8, 2005
Accepted November 22, 2005
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
탄소계 촉매를 이용한 프로판 분해 반응에 의한 수소 생산
Hydorgen Production by Catalytic Decomposition of Propane
Suk Hoon Yoon
Gi Bo Han
Jong Dae Lee
No-Kuk Park
Si Ok Ryu
Tae Jin Lee†
Ki June Yoon1
Gui Young Han1
영남대학교 디스플레이화학공학부, 국가지정연구실, 712-749 경북 경산시 대동 214-1 1성균관대학교 화학공학과, 440-746 경기도 수원시 장안구 천천동 300
National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea 1Department of Chemical Engineering, SungKyunkwan University, 300, Cheoncheon-dong, Jangan-gu, Suwon 440-746, Korea
Korean Chemical Engineering Research, December 2005, 43(6), 668-674(7), NONE Epub 23 January 2006
Download PDF
Abstract
카본블랙을 이용한 프로판 분해는 메탄보다 분해가 용이하여 효과적인 수소생산방법으로 알려졌다. 특히, 프로판 직접 분해 반응에 의한 수소생산은 CO나 CO2와 같은 부산물이 생성되지 않으므로 환경친화적인 수소 생산기술이다. 본 연구에서는 국내에서 상용화되어 시판되고 있는 활성탄 및 카본블랙을 탄소계 촉매로 사용하여 프로판 직접 분해반응특성을 조사하였다. 프로판의 직접 분해반응은 대기압 하, 500~1,000 oC 온도영역에서 실험이 수행되었으며, 프로판 분해반응에 의한 생성물로 수소뿐만 아니라 메탄, 에틸렌, 에탄, 프로필렌 등의 부산물의 생성이 확인되었다. 이러한 부산물들은 고온으로 갈수록 줄어들어 상대적으로 수소 수율이 증가함을 알 수 있었다. 다양한 상용촉매를 프로판 분해 반응에 적용하여 본 결과로서 DCC N330을 촉매로 이용하였을 경우, 750 oC에서 22.47% 의 수소 수율을 얻었다.
It is reported that a method for the hydrogen production from the propane decomposition using carbon black as a catalyst is more effective than from the methane decomposition. Since the by-products like CO and CO2 are not produced by the direct decomposition of propane, it is considered as an environmentally sustainable process. In this study, hydrogen was produced by the direct decomposition of propane using either commercial activated carbon or carbon black at atmospheric pressure in the temperature range of 500-1,000 ℃. Resulting products in our experiment were not only hydrogen but also several by-products such as methane, ethylene, ethane, and propylene. Hydrogen yield increased as temperature increased because the amount of those by-products produced in the experiment was inversely proportional to temperature. The achieved hydrogen yield at 750 ℃ with commercial DCC N330 catalyst was 22.47% in this study.
Keywords
References
Muradov N, "Thermocatalytic CO2-free Production of Hydrogen from Hydrocarbon Fuels", Proceeding of the DOE Hydrogen Program Reciew, NREL/CP-570-30535 (2001)
Muradov N, "Thermocatalytic CO2-free Production of Hydrogen from Hydrocarbon Fuels", Proceeding of the 2000 Hydrogen Program Review, NREL/CP-570-28890 (2000)
Muradov NZ, Energy Fuels, 12(1), 41 (1998)
Aiello R, Fiscus JE, zur Loye HC, Amiridis MD, Appl. Catal. A: Gen., 192(2), 227 (2000)
Lee EK, Lee SY, Han GY, Lee BK, Lee TJ, Jun JH, Yoon KJ, Carbon, 42(12-13), 2641 (2004)
Kim MH, Lee EH, Jun JH, Lee SY, Han GY, Lee BK, Lee TJ, Yoon KJ, Int. J. Hydrog. Energy, 29(2), 187 (2004)
Lee KK, Han GY, Yoon KJ, Lee BK, Catal. Today, 93-95, 81 (2004)
Muradov N, J. Power Sources, 118(1-2), 320 (2003)
Otsuka K, Kobayashi S, Takenaka S, Appl. Catal. A: Gen., 210(1-2), 371 (2001)
Otsuka K, Shigeta Y, Takenaka S, Int. J. Hydrog. Energy, 27(1), 11 (2002)
Muradov N, "Thermocatalytic CO2-free Production of Hydrogen from Hydrocarbon Fuels", Proceeding of the 2000 Hydrogen Program Review, NREL/CP-570-28890 (2000)
Muradov NZ, Energy Fuels, 12(1), 41 (1998)
Aiello R, Fiscus JE, zur Loye HC, Amiridis MD, Appl. Catal. A: Gen., 192(2), 227 (2000)
Lee EK, Lee SY, Han GY, Lee BK, Lee TJ, Jun JH, Yoon KJ, Carbon, 42(12-13), 2641 (2004)
Kim MH, Lee EH, Jun JH, Lee SY, Han GY, Lee BK, Lee TJ, Yoon KJ, Int. J. Hydrog. Energy, 29(2), 187 (2004)
Lee KK, Han GY, Yoon KJ, Lee BK, Catal. Today, 93-95, 81 (2004)
Muradov N, J. Power Sources, 118(1-2), 320 (2003)
Otsuka K, Kobayashi S, Takenaka S, Appl. Catal. A: Gen., 210(1-2), 371 (2001)
Otsuka K, Shigeta Y, Takenaka S, Int. J. Hydrog. Energy, 27(1), 11 (2002)