ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 14, 2005
Accepted November 11, 2005
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

메조포러스 분자체에 담지된 Pt/Pd 촉매상에서 납사분해 잔사유의 방향족 화합물 수소화 특성

Hydrogenation Characteristics of Aromatics in Residue Oil of Naphtha Cracking on Pt/Pd Impregnated Mesoporous Molecular Sieve

한국화학연구원 응용화학연구부, 305-600 대전시 유성구 장동 100 1한양대학교 응용화학공학부, 133-791 서울시 성동구 행당동 17
Applied Chemistry and Engineering Division, KRICT, 100, Jang-dong, Yuseong-gu, Dajeon 305-600, Korea 1Department of Chem. Eng, Hanyang Univ., 17, Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
Korean Chemical Engineering Research, December 2005, 43(6), 675-682(8), NONE Epub 23 January 2006
downloadDownload PDF

Abstract

불화실리콘산(H2SiF6)과 질산알루미늄의 혼합 수용액을 주형으로 사용되는 16TMABr cethyltrimethylaminonium bromide)용액에 첨가하여 불화실리콘산의 hydrolysis 반응에 의해서 메조포러스 분자체(Al-MMS)를 합성하였다. 합성된 분자체를 분석한 결과 비표면적이 981 m2/g이고, 기공 크기가 39 A 부근에서 균일함을 보이는 메조포러스 분자체가 합성되었으며, NH3-TPD 결과 산의 세기가 크지 않음을 알 수 있었다. 합성된 담체가 납사분해 잔사유에 포함되어 있는 방향족 화합물의 수소화 반응에 대한 촉매 담체로써 적용 가능한가를 조사하기 위해서 Pt 및 Pd의 금속 성분을 담지시킨 후, 납사 분해 잔사유에 많이 포함되어 있는 방향족 화합물인 나프탈렌을 모델화합물로 정하고 나프탈렌의 수소화 반응에 대한 온도별 전환율, 반응속도 상수, 활성화 에너지를 조사하였다. 또한, 다른 메조포러스 담체와 상용담체를 이용하여 촉매를 제조한 후 같은 방법으로 비교하였다. 그 결과 PtPd/Al-MMS 촉매가 우수한 탈방향족 활성과 황저항성을 나타내었으며, 다른 메조포러스 담체 및 상용 담체와 비교한 결과 활성이 우수하게 나타났다. 실제 납사분해 잔사유의 일종인 PGO(pyrolized gas oil)를 원료로 실험해 본 결과 활성이 우수하게 나타났으며 Pd/Al-MMS 촉매는 납사분해 잔사유에 포함된 방향족 화합물의 수소화 촉매로써 응용 가능성을 보였다.
Al containing mesoporous molecular sieve (Al-MMS) was synthesized by hydrolysis of H2SiF6 and Al(NO3)3·9H2O. The material obtained was characterized by XRD, N2-physisorption. The specific surface area was 981 m2/g, and the average pore size was uniformity 39 A. It was confirmed that the acidity of Al-MMS was milder than that of zeolite Y based on the results of NH3-TPD. Active materials, Pt and Pd, were loaded on Al-MMS in order to examine the feasibility of using Al-MMS as a catalyst support in the hydrogenation of aromatic compounds included in the residue oil of a naphtha cracker. The hydrogenation activity of PtPd/Al-MMS has been studied by following the kinetics of the hydrogenation of naphthalene, and by comparing the kinetic parameters obtained with Pt and Pd catalysts supported on the other mesoporous material support and commercial conventional support materials. PtPd/Al-MMS catalyst shows the highest activity of hydrogenation and sulfur resistance. The high activity of PtPd/Al-MMS was confirmed again in the hydrogenation of PGO (pyrolized gas oil), which is residue oil obtained from a naphtha cracker. Therefore, PtPd/Al-MMS can be applied to the hydrogenation of aromatic compounds included in the residue oil of a commercial naphtha cracker commericially.

References

Huang TC, Kang BC, J. Mol. Catal. A-Chem., 103, 163 (1995) 
Santikunaporn M, Herrera JE, Jongpatiwut S, Resasco DE, Alvarez WE, Sughrue EL, J. Catal., 228(1), 100 (2004) 
Fujikawa T, Idei K, Ebihara T, Mizuguchi H, Usui K, Appl. Catal. A: Gen., 192(2), 253 (2000) 
Kimbara N, Charland JP, Wilson MF, Ind. Eng. Chem. Res., 35(11), 3874 (1996) 
Schmitz AD, Song CS, Catal. Today, 31(1-2), 19 (1996) 
Winquist BH, "Hydrogenation Catalyst and Process", U.S. Patent No. 5,391,291 (1995)
John WW, "Catalyst Containing Zeolite Beta", U.S. Patent No. 5,536,687 (1996)
William RD, "Method for Removing Magnesium from Aluminum-Magnesium Alloys with Engineered Scavenger Compound", U.S. Patent No. 5,500,100 (1996)
Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL, J. Am. Chem. Soc., 114, 10834 (1992) 
Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS, Nature, 359, 710 (1992) 
Yue YH, Sun Y, Gao Z, Catal. Lett., 47(2), 167 (1997) 
Corma A, Martinez A, Martinezsoria V, J. Catal., 169(2), 480 (1997) 
Park KC, Yim DJ, Ihm SK, Catal. Today, 74(3-4), 281 (2002) 
Jeong SY, Suh JK, Lee JM, Kwon OY, J. Colloid Interface Sci., 192(1), 156 (1997) 
Ahn WS, Kim NK, Jeong SY, Catal. Today, 68(1-3), 83 (2001) 
Kim JM, Jun S, Ryoo R, J. Phys. Chem. B, 103(30), 6200 (1999) 
Jeong SY, Suh JK, Lee JM, Kwon OY, J. Colloid Interface Sci., 192(1), 156 (1997) 
Costa C, Lopes JM, Lemos F, Ramoa Ribeiro F, J. Mol. Catal. A-Chem., 144, 221 (1999) 
Girgis MJ, Gates BC, Ind. Eng. Chem. Res., 30, 2021 (1991) 
Koussathana M, Vamvouk D, Economon H, Verykios X, Appl. Catal., 77, 283 (1991) 
Lin SD, Song CS, Catal. Today, 31(1-2), 93 (1996) 
Bouchy M, Peureux-Denys S, Dufresne P, Kasztelan S, Ind. Eng. Chem. Res., 32, 1592 (1992) 
Zhan XD, Guin JA, Energy Fuels, 8(6), 1384 (1994) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로