Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 30, 2005
Accepted November 24, 2005
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Simulated Moving Bed 크로마토그래피를 이용한 프럭토 올리고당의 정제
Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography
인하대학교 생물공학과, 402-701 인천시 남구 용현동 253 1인하대학교 초정밀생물분리기술연구센터, 402-701 인천시 남구 용현동 253
Department of Biological Engineering, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-701, Korea 1ERC for Advanced Bioseparation Technology, Inha University, 253, Yonghyun-dong, Nam-gu, Incheon 402-701, Korea
Korean Chemical Engineering Research, December 2005, 43(6), 715-721(7), NONE Epub 23 January 2006
Download PDF
Abstract
SMB 크로마토그래피 기술을 포도당, 수크로즈, 프럭토 올리고당(케스토즈, 니스토즈)의 혼합물 중 프럭토 올리고당을 고순도로 얻기 위해 사용하였다. SMB 운전 조건은 일반적으로 실험 중 칼럼 내에서 발생하는 반응을 고려하지 않는 삼각형 이론(triangle theory)이나 정지파(standing wave) 디자인을 따른다. 그러나 칼럼 내에서 반응은 실험 결과에 크게 영향을 미칠 수 있다. 프럭토 올리고당은 운전 중 가수분해되어 포도당과 과당으로 분해된다. 반응을 바로잡기 위해 가수 분해 후 정상상태에서 각 성분의 농도를 역 추정하였고 이를 모사에 적용하였다. 수크로즈를 제외한 포도당과 케스토즈, 니스토즈의 농도 곡선은 거의 일치했으나 수크로즈는 중간물질이며 가수분해 속도가 프럭토 올리고당에 비해 느리기 때문에 농축되어 모사 결과와 일치하지 않았다. 프럭토 올리고당은 산성이고 높은 온도 조건에서 더 쉽게 가수분해가 일어난다. 분리수지에 전 처리를 하여 pH를 조정해 더 낮은 온도에서 실험을 수행하면 가수분해 정도를 감소시킬 수 있다.
The SMB chromatography is used to obtain high purification of fructooligosaccharides (FOS), the mixture of kestose and nystose. SMB operation condition is usually determined by triangle theory or standing wave design when reactions do not occur within columns during experiment. Some of the reactions in columns may considerably affect experimental results. FOS can be hydrolyzed and converted into glucose and fructose during operation. To include the effect of reaction, the concentrations of each component at steady state after hydrolysis were used in simulation. The obtained simulation values are well matched with experimental results except sucrose. For sucrose, the experimental results were different from expected one due to the existence of an intermediate component. FOS is easily hydrolyzed and converted into glucose and fructose in more acidic condition and at higher temperature. Hydrolysis reaction can be prevented by the pretreatment of separation resin with NaOH as well as operation under lower temperature.
References
Yun JW, Song SK, Biotechnol. Lett., 15(7), 573 (1993)
Yun JW, Enzyme Microb. Technol., 19(2), 107 (1996)
Hidaka H, Hirayama M, Sumi NA, Agric. Biol. Chem., 52(7), 1181 (1988)
Lewis D, New Phytol., 124(5), 583 (1993)
Hogarth AJ, Hunter DE, Jacobs WA, Garleb KA, Wolf BW, J. Agric. Food Chem., 48(11), 5326 (2000)
L'homme C, Arbelot M, Puigserver A, Biagini A, J. Agric. Food Chem., 51(1), 224 (2003)
Broughton DB, Chem. Eng. Prog., 64(1), 60 (1968)
Broughton DB, Neuzil RW, Pharis JM, Brearley CS, Chem. Eng. Prog., 66(1), 70 (1970)
Ching CB, Chu KH, Hidajat K, Ruthven DM, Chem. Eng. Sci., 48(7), 1343 (1993)
Pais LS, Loureiro JM, Rodrigues AE, Chem. Eng. Sci., 52(2), 245 (1997)
Zoltan M, Melinda N, Antal A, Laszlo H, Janos A, Istvan P, Tibor S, J. Chromatogr. A, 1075(1-2), 77 (2005)
Xie Y, Wu DJ, Ma ZD, Wang NHL, Ind. Eng. Chem. Res., 39(6), 1993 (2000)
Hashimoto K, Adachi S, Shirai Y, Agric. Biol. Chem., 52(11), 2161 (1998)
Storti G, Mazzotti M, Morbidelli M, Carra S, AIChE J., 39(3), 471 (1993)
Ma Z, Wang NH, AIChE J., 43(10), 2488 (1997)
Gentilini A, Migliorini C, Mazzotti M, Morbidellli M, J. Chromatogr. A, 805(1-2), 37 (1998)
Mazzotti M, Storti G, Morbidelli M, J. Chromatogr. A, 769(1), 3 (1997)
Minceva M, Pais LS, Rodrigues AE, Chem. Eng. Process., 42(2), 93 (2003)
Hashimoto K, Adachi S, Noujima H, Maruyama A, J. Chem. Eng. Jpn., 16(5), 400 (1983)
Wankat PC, (Ed), Rate-Controlled Separations, Glasgow, Elsevier Applied Science, London and New York (1994)
Kim YD, Lee JK, Cho YS, Korean J. Chem. Eng., 18(6), 971 (2001)
Han SK, Yeo MS, Lee JK, Park TJ, Koo YM, Row KH, HWAHAK KONGHAK, 41(6), 728 (2003)
Park BJ, Lee CH, Koo YM, Korean J. Chem. Eng., 22(3), 425 (2005)
Yun JW, Enzyme Microb. Technol., 19(2), 107 (1996)
Hidaka H, Hirayama M, Sumi NA, Agric. Biol. Chem., 52(7), 1181 (1988)
Lewis D, New Phytol., 124(5), 583 (1993)
Hogarth AJ, Hunter DE, Jacobs WA, Garleb KA, Wolf BW, J. Agric. Food Chem., 48(11), 5326 (2000)
L'homme C, Arbelot M, Puigserver A, Biagini A, J. Agric. Food Chem., 51(1), 224 (2003)
Broughton DB, Chem. Eng. Prog., 64(1), 60 (1968)
Broughton DB, Neuzil RW, Pharis JM, Brearley CS, Chem. Eng. Prog., 66(1), 70 (1970)
Ching CB, Chu KH, Hidajat K, Ruthven DM, Chem. Eng. Sci., 48(7), 1343 (1993)
Pais LS, Loureiro JM, Rodrigues AE, Chem. Eng. Sci., 52(2), 245 (1997)
Zoltan M, Melinda N, Antal A, Laszlo H, Janos A, Istvan P, Tibor S, J. Chromatogr. A, 1075(1-2), 77 (2005)
Xie Y, Wu DJ, Ma ZD, Wang NHL, Ind. Eng. Chem. Res., 39(6), 1993 (2000)
Hashimoto K, Adachi S, Shirai Y, Agric. Biol. Chem., 52(11), 2161 (1998)
Storti G, Mazzotti M, Morbidelli M, Carra S, AIChE J., 39(3), 471 (1993)
Ma Z, Wang NH, AIChE J., 43(10), 2488 (1997)
Gentilini A, Migliorini C, Mazzotti M, Morbidellli M, J. Chromatogr. A, 805(1-2), 37 (1998)
Mazzotti M, Storti G, Morbidelli M, J. Chromatogr. A, 769(1), 3 (1997)
Minceva M, Pais LS, Rodrigues AE, Chem. Eng. Process., 42(2), 93 (2003)
Hashimoto K, Adachi S, Noujima H, Maruyama A, J. Chem. Eng. Jpn., 16(5), 400 (1983)
Wankat PC, (Ed), Rate-Controlled Separations, Glasgow, Elsevier Applied Science, London and New York (1994)
Kim YD, Lee JK, Cho YS, Korean J. Chem. Eng., 18(6), 971 (2001)
Han SK, Yeo MS, Lee JK, Park TJ, Koo YM, Row KH, HWAHAK KONGHAK, 41(6), 728 (2003)
Park BJ, Lee CH, Koo YM, Korean J. Chem. Eng., 22(3), 425 (2005)