ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 19, 2005
Accepted March 7, 2006
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

생물여과 반응기에서 수리학적 체류시간 및 폭기량에 따른 아질산 축적 특성

Nitrite Accumulation Characteristics According to Hydraulic Retention Time and Aeration Rate in a Biological Aerated Filter

울산대학교 생명화학공학부, 680-749 울산시 남구 무거2동 산29 1한림대학교 환경생명공학과, 200-702 강원도 춘천시 한림대학길 39
School of Chemical Engineering and Bioengineering, University of Ulsan, San 29, Muger 2-dong, Nam-gu, Ulsan 680-749, Korea 1Department of Environmental Sciences & Biotechnology, Hallym University, 39, Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Korea
Korean Chemical Engineering Research, April 2006, 44(2), 200-206(7), NONE Epub 10 May 2006
downloadDownload PDF

Abstract

세라믹 담체가 충진된(공극률 32%) 생물여과 반응기(BAF)를 이용하여 암모니아성 질소폐수를 처리할 때, 수리학적체류시간(HRT) 및 폭기량의 변화가 아질산 축적에 미치는 영향에 대해서 고찰하였다. 암모니아성 합성 폐수 및 석유화학 실폐수를 1.6kgNH4+-N/m3·d 내외의 질소 부하로 BAF에 공급하였을 때, 암모니아성 질소의 제거율은 폭기량 증가에 비례하였으나 아질산 축적률은 폭기량 외에도 HRT의 영향을 받았다. 0.23시간의 HRT에서(공탑 체류시간 기준0.7시간)는 0.23, 0.45, 0.56cm/s로 공기 선속도를 증가시키면, 암모니아성 질소 제거율은 각각 73, 90, 92%로 증가하였으나 아질산 축적비(NO2-N/NOx-N)는 0.92, 0.82, 0.48로 점차 감소하였다. 반면에 HRT 0.9시간, 공기 선속도0.34~0.45 cm/s 범위에서는 암모니아성 질소 제거율 89%, 아질산 축적비 0.13 내외로 아질산 축적률이 급격하게 감소하였다. 공기 선속도 0.34cm/s, HRT 1.4시간에서는 암모니아성 질소 제거율의 감소로 free ammonia(FA, NH3-N) 농도가 상승하였고, 이후 약 50일에 걸쳐 아질산 축적비는 0.95 이상까지 점차 증가하였다. 본 연구에서는 HRT 0.23시간에서의 FA 농도 및 폭기 조건이 HRT 0.9시간 조건에 비해 아질산 축적에 더 불리했음에도 HRT 0.23시간에서의아질산 축적률이 더 높게 나타났다. 따라서 FA 농도, 폭기 조건 외에도 HRT, 질소 부하 조건에 따라 BAF에서 아질산축적량이 영향을 받았다. 반면에 FA 농도가 매우 높게(FA 5~15 mgN/L) 유지되는 조건에서는 운전 조건에 상관없이아질산 축적이 안정하게 일어났으며 이 경우는 암모니아성 질소 제거율이 감소하였다.
In a biological aerated filter (BAF) packed with ceramic media (void fraction of BAF=0.32), nitrite accu-mulation was studied with the variation of hydraulic retention time (HRT) and superficial air velocity. Synthetic ammo-nium wastewater and petrochemical wastewater were fed at a constant load of 1.6 kgNH4+-N/m3·d. Ammonium removalrate was mainly affected by the superficial air velocity in BAF, but nitrite ratio(NO2-N/NOx-N) in the effluent wasdependent on both HRT and superficial air velocity. For a fixed HRT of 0.23 hr (corresponding to the empty bed contacttime of 0.7 hr) ammonium removal rate was 73/90/92% and nitrite ratio was 0.92/0.82/0.48 at the superficial air velocityof 0.23/0.45/0.56 cm/s, respectively. When HRT is increased to 0.9 hr with superficial air velocity ranging from 0.34 to0.45 cm/s, the ammonium removal rate was 89% on average. However nitrite ratio decreased significantly down to0.13. When HRT was further increased to 1.4 hr, ammonium removal rate decreased, thereby resulting in the free ammo-nia (NH3-N, FA) build-up and nitrite ratio gradually increased (>0.95). Although aeration rate and FA concentration atHRT of 0.23 hr were unfavorable for nitrite accumulation compared with those at HRT of 0.9 hr, nitrite ratio at HRT of 0.23hr was higher. Taken together, HRT and nitrogen load were found to be critical, in addition to FA concentration and aer-ation condition, for nitrite accumulation in the BAF tested in the present study.

References

Wiesmann U, in A. Fiechter(Ed.), Biological Nitrogen Removal from Wastewater: Advances in Biochemical Engineering and Biotechnology., 51, Berlin:Springer-Verlag, 113-154 (1994)
Lee SC, Kim DJ, HWAHAK KONGHAK, 39(1), 123 (2001)
Abelling U, Seyfried CF, Water Sci. Technol., 26(5), 1007 (1992)
Wett B, Rauch W, Water Res., 37(5), 1100 (2003) 
Ghyoot W, Vandaele S, Verstraete W, Water Res., 33(1), 23 (1999) 
Garrido JM, Vanbenthum WA, Vanloosdrecht MC, Heijnen JJ, Biotechnol. Bioeng., 53(2), 168 (1997) 
Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG, J. Water Pollut. Control Fed., 48(5), 835 (1976)
Kim DJ, Chang JS, Lee DI, Han DW, Yoo IK, Cha GC, Water Sci. Technol., 47(11), 45 (2003)
Turk O, Mavinic DS, Water Res., 23(11), 1383 (1989) 
Kuai L, Verstraete W, Appl. Environ. Microbiol., 64(11), 4500 (1998)
Yoo IK, Kim GH, Kim DJ, HWAHAK KONGHAK, 36(6), 945 (1998)
Pujol R, Hamon M, Kandel X, Lemmel H, Water Sci. Technol., 29(10-11), 33 (1994)
Mann A, Mendoza-Espinosa L, Stephenson T, J. Chem. Technol. Biotechnol., 72(3), 273 (1998) 
Villaverde S, Garcia-Encina PA, FDZ-Polanco F, Water Res., 31(5), 1180 (1997) 
Cecen F, Gonenc I, Water Sci. Technol., 29(10), 409 (1994)
Joo SH, Kim DJ, Yoo IK, Park K, Cha GC, Biotechnol. Lett., 22(11), 937 (2000) 
APHA, Standard Methods for the Examination of Water and Wastewater, 19th ed., APHA, Washington, D.C (1996)
Hellinga CA, Schellen AJC, Mulder JW, van Loosdrecht MCM, Heijnen JJ, Water Sci. Technol., 37(9), 135 (1998) 
Randall CW, Buth D, J. Water Pollut. Control Fed., 56(9), 1045 (1984)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로