Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 31, 2005
Accepted January 19, 2006
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
응집 공정상에서 플럭의 성장 특선 고찰
The Characteristic Floc Growth in Coagulation and Flocculation Processes
경원대학교 화학생명공학과, 461-701 경기도 성남시 수정구 복정동 산65
Department of Chemical and Bioengineering, Kyungwon University, San 65, Bokjung-dong, Soojung-gu,Seongnam-shi, Kyunggi-do 461-701, Korea
Korean Chemical Engineering Research, April 2006, 44(2), 207-215(9), NONE Epub 10 May 2006
Download PDF
Abstract
본 연구의 목적은 응집공정에서 생성되는 플럭의 성상을 가시화하여 PACC의 응집 특성을 고찰하였다. 인공 원수내탁질 입자의 제타전위는 pH 8~9에서 영으로 수렴하였고 이 영역에서 TDS와 전기전도도가 최소값을 나타내 주었다.급속 및 완속 교반의 최적 혼화강도가 관측되었으며, 특히 탁도의 제거에 있어서는 급속교반의 속도경사가 가장 낮은95.1 sec?1에서 최대의 제거율을 나타내었다. 급속교반 후에는 3~5μm의 작은 입자가 급격히 생성되었으며 교반강도가 클수록 더 많은 수의 입자가 생성되었다. 완속교반이 진행될수록 3~5μm의 작은 입자의 수는 급격히 감소하였고7~21μm의 중간 크기의 입자는 증가하는 경향을 나타내주었다. 23μm 보다 큰 입자의 경우는 급속교반의 속도경사가95.1 sec-1에서 가장 많은 수가 생성되었고, 3~5μm의 작은 입자의 경우에는 급속교반의 속도경사가 760.7 sec-1에서가장 많이 생성되었다.
The characteristic floc growth of Al-based coagulants was investigated in the aspect of mixing intensityand visualization of generated flocs during coagulation and flocculation processes. Zeta potential of turbid particles inthe artificial water nearly approached to zero at pH 8-9, in which TDS and conductivity were minimized. The removalrate of turbidity and phosphate was maximized at the optimal mixing intensity of rapid and slow mixing stages. After therapid mixing stage of coagulation process, small particles (3-5μm) were abruptly generated, and higher mixing inten-sity made more numbers of flocs. With the progress of slow mixing stage, the number of small particles were decreasedwith the simultaneous increase of intermediate particles (7-21μm). The number of large particles (>23μm) were max-imized at the lowest rapid mixing intensity of 95.1 sec-1, whereas small particles (<5μm) were maximized at the highestrapid mixing intensity of 760.7 sec-1.
References
Kemira K, Handbook on Water Treatment, Helsingburg, Sweden (1993)
Lee CH, Lee SH, Okada M, J. KSEE, 26, 876 (2004)
Rossini M, Garrido JG, Galluzzo M, Water Res., 33, 1817 (1999)
Kang LS, Han SW, Jung CW, Korean J. Chem. Eng., 18(6), 965 (2001)
Bouyer D, Coufort C, Line A, Do-Quang Z, J. Colloid Interface Sci., 292(2), 413 (2005)
Francois RJ, Journal AWWA, 80(6), 92 (1988)
Dharmappa HB, Verink J, Fujiwara O, Vigneswaran S, Water Res., 27, 513 (1993)
Han M, Lawler DF, J. AWWA, 84, 79 (1992)
Jeong JK, Yoon TI, Seo HJ, Kim JY, J. KSEE, 5, 67 (1983)
Kwak JW, Physico-chemical Principle and Practice of Water Treatment, Yeigigak (1998)
Tambo N, Hozumi H, Water Res., 13, 421 (1979)
Wiesner MR, Water Res., 26(3), 379 (1992)
Reynolds TD, Richards P, Unit Operations and Processes in Environmental Engineering, Boston, PWS Publishing Company (1995)
Han SW, Lee CW, Kang LS, Korean Chem. Eng. Res., 40(5), 612 (2004)
Lee KS, Lee SW, J. KSEE, 26(6), 642 (2004)
Lee SW, Lee KS, Kang IJ, Yoon HH, Haam SJ, Kwak JW, J. Korean Ind. Eng. Chem., 16(1), 74 (2005)
Kim JP, Han IS, Chung CB, Korean J. Chem. Eng., 20(3), 580 (2003)
Lee CH, Lee SH, Okada M, J. KSEE, 26, 876 (2004)
Rossini M, Garrido JG, Galluzzo M, Water Res., 33, 1817 (1999)
Kang LS, Han SW, Jung CW, Korean J. Chem. Eng., 18(6), 965 (2001)
Bouyer D, Coufort C, Line A, Do-Quang Z, J. Colloid Interface Sci., 292(2), 413 (2005)
Francois RJ, Journal AWWA, 80(6), 92 (1988)
Dharmappa HB, Verink J, Fujiwara O, Vigneswaran S, Water Res., 27, 513 (1993)
Han M, Lawler DF, J. AWWA, 84, 79 (1992)
Jeong JK, Yoon TI, Seo HJ, Kim JY, J. KSEE, 5, 67 (1983)
Kwak JW, Physico-chemical Principle and Practice of Water Treatment, Yeigigak (1998)
Tambo N, Hozumi H, Water Res., 13, 421 (1979)
Wiesner MR, Water Res., 26(3), 379 (1992)
Reynolds TD, Richards P, Unit Operations and Processes in Environmental Engineering, Boston, PWS Publishing Company (1995)
Han SW, Lee CW, Kang LS, Korean Chem. Eng. Res., 40(5), 612 (2004)
Lee KS, Lee SW, J. KSEE, 26(6), 642 (2004)
Lee SW, Lee KS, Kang IJ, Yoon HH, Haam SJ, Kwak JW, J. Korean Ind. Eng. Chem., 16(1), 74 (2005)
Kim JP, Han IS, Chung CB, Korean J. Chem. Eng., 20(3), 580 (2003)