ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 2, 2006
Accepted June 28, 2006
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Sn-Zr계 촉매 상에서 CO와 H2를 이용한 SO2 환원 반응특성

The Reactivity for the SO2 Reduction with CO and H2 over Sn-Zr Based Catalysts

영남대학교 디스플레이화학공학부, 국가지정연구실, 712-749 경북 경산시 대동 214-1
National Research Laboratory, School of Chemical Engineering & Technology, Yeungnam University, 214-1, Dae-dong, Gyeongsan, Gyeongbuk 712-749, Korea
Korean Chemical Engineering Research, August 2006, 44(4), 356-362(7), NONE Epub 6 September 2006
downloadDownload PDF

Abstract

본 연구에서는 석탄가스화복합발전(integrated gas combined cycle, 이하 IGCC) 시스템의 석탄가스화기로부터 생산되는 석탄가스가 환원제로 이용되는 SO2 환원공정인 직접 황 회수 공정(direct sulfur recovery process, 이하 DSRP)에서 이용 가능한 Sn-Zr계 촉매 상에서의 SO2 환원반응특성을 조사하였다. Sn-Zr계 촉매는 0/1, 1/4, 1/1, 2/1, 3/1, 1/0의 Sn/Zr 몰비로 조절하여 침전법 및 공침법으로 제조되었다. 공간속도가 10,000ml/g-cat.· h, 반응물 몰비([CO (or H2)]/[SO2])가 2.0인 반응조건 하에서 Sn-Zr계 촉매를 이용하여 온도를 변화시킨 가운데 석탄가스에 포함되어 있는 H2 또는 CO를 환원제로 사용하여 SO2 환원에 대한 반응특성이 조사되었다. 실험 결과, 환원제의 종류에 상관없이 SnO2와 ZrO2보다 Sn-Zr계 촉매가 활성이 더 높았으며, 환원제의 종류에 대한 반응성 조사 결과, H2보다 CO가 SO2 환원에 더 높은 반응성을 나타내었다. H2가 환원제로 이용된 SO2 환원특성을 조사한 결과, Sn/Zr 비에 따라 제조된 Sn-Zr계 촉매의 종류에 상관없이 온도가 증가함에 따라 반응성이 증가하는 경향을 보이며 Sn/Zr 몰비가 1/4인 촉매를 사용한 경우 550 °C에서 SO2 전환율이 94.4%, 원소 황 수율이 66.4%로 높은 반응성을 나타내었다. 반면 CO를 환원제로 이용한 경우에는 Sn/Zr 몰비가 높은 촉매일수록 최적 반응온도가 감소되는 특이한 경향을 나타내었다. Sn-Zr계 촉매 중 Sn/Zr 몰비가 3/1인 SnO2-ZrO2 촉매가 가장 낮은 최적 반응온도에서 높은 반응성을 나타내었는데, 325 °C에서 SO2 전환율이 약 100%, 원소 황 수율이 약 99.5%로 가장 높은 반응성을 얻었다. 그리고 CO가 H2보다 더 많이 포함되어 있는 석탄모사가스에 대하여 환원제로서의 이용가능성을 확인하고자 CO/H2 비를 달리한 각각의 합성가스에 대하여 SO2 환원반응실험을 수행하였다. Sn/Zr 몰비가 2/1인 Sn-Zr계 촉매 상에서 SO2 환원반응 실험 결과, CO 함량이 높은 합성가스일수록 효과적인 환원제임을 확인할 수 있었다. 따라서 Sn-Zr계 촉매가 적용된 DSRP에서 석탄모사가스가 환원제로 이용 가능하다는 것을 알 수 있었다.
The SO2 reduction using CO and H2 over Sn-Zr based catalysts was performed in this study. Sn-Zr based catalysts with Sn/Zr molar ratio (0/1, 1/4, 1/1, 2/1, 3/1, 1/0) were prepared by the precipitation and co-precipitation method. The effect of the temperature on the reaction characteristics of the SO2 reduction with a reducing agent such as H2 and CO was investigated under the conditions of space velocity of 10,000 ml/g-cat.h, [CO (or H2)]/[SO2] of 2.0. As a result, the activity of Sn-Zr based catalysts were higher than SnO2 and ZrO2. The reactivity for the SO2 reduction with CO was higher than that with H2, and sulfur yield in the SO2 reduction by H2 was higher than that by CO. The reactivity for the SO2 reduction with H2 was increased with the reaction temperature regardless of Sn-Zr based catalyst with a Sn/Zr molar ratio. SnO2-ZrO2 (Sn/Zr=1/4) had highest activity at 550 °C, in the SO2 reduction with H2 and SO2 conversion of 94.4% and sulfur yield of 66.4% were obtained at 550 °C. On the other hand, in the SO2 reduction by CO, the reactivity was decreased with the increase over 325 °C. At the optimal temperature of 325 oC, SO2 conversion and sulfur yield were about 100% and 99.5%, respectively, in the SO2 reduction over SnO2-ZrO2 (Sn/Zr=3/1). Also, the SO2 reduction using syngas with CO/H2 ratio over SnO2-ZrO2 (Sn/Zr=2/1) was performed in order to investigate the application possibility of the simulated coal gas as the reductant in DSRP. As a result, the reactivity of the SO2 reduction using syngas with CO/H2 ratio was increased with increasing the CO content of syngas. Therefore, it could be known that DSRP using the simulated coal gas over Sn-Zr based catalyst is possible to be realized in IGCC system.

References

Lepose R, Ind. Eng. Chem., 32, 910 (1940) 
Dumani TF, Bradley WE, Industrial & Engineering Chemistry, 36(4), 329 (1944) 
Khalafalla SE, Haas LA, J. Catal., 24(1), 121 (1972) 
Okay VC, Short WL, Ind. Eng. Chem. Process Des. Dev., 12(3), 291 (1973) 
Happel J, Leon AL, Hnatow MA, Bajars L, Ind. Eng. Chem. Prod. Res. Dev., 16(2), 150 (1977) 
Bazes JGI, Caretto LS, Nobe K, Ind. Eng. Chem. Prod. Res. Dev., 14(4), 264 (1975) 
Salis J, Berk D, Ind. Eng. Chem. Res., 27(10), 1951 (1988) 
Mulligan DJ, Berk D, Ind. Eng. Chem. Res., 28(7), 926 (1989) 
Kim BS, Lee JD, Park NK, Ryu SO, Lee TJ, Kim JC, HWAHAK KONGHAK, 41(5), 572 (2003)
Han GB, Park NK, Lee JD, Ryu SO, Lee TJ, Catal. Today, 111(3-4), 205 (2006) 

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로