Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 27, 2006
Accepted July 18, 2006
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Ti-구형활성탄의 유동상 광촉매 특성 평가
Characteristics of Ti-SPAC as Fluidizing Phase Photocatalyst
한국화학연구원 화학공정연구센터, 305-600 대전시 유성구 장동 100 1연세대학교 화학공학과, 120-749 서울시 서대문구 신천동 134
Center for Chemical Process & Engineering, Korea Research Institute of Chemical Technology, 100, Jang-dong, Yuseong-gu, Daejeon 305-600, Korea 1Department of Chemical Engineering, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
jksuh@krict.re.kr
Korean Chemical Engineering Research, August 2006, 44(4), 375-381(7), NONE Epub 6 September 2006
Download PDF
Abstract
티타늄 담지 구형활성탄(spherical activated carbon, SPAC)을 제조하여 유동상 광촉매 반응에 적용하고 그 특성을 평가하였다. 티타늄을 담지하기 위하여 염화티타늄용액으로 이온교환 처리된 이온교환수지를 열처리 과정을 통하여 구형활성탄으로 변환시켜 주었다. 열처리 과정 중 감량되는 성분 및 무게 변화는 TGA/MS 분석을 통하여 알아보았으며, Ti을 함유한 구형활성탄의 물리화학적 성질은 SEM, XRD, EPMA, ESR, EDS, BET와 같은 분석을 통하여 그 특성을 알아보았다. 그 결과 Ti-구형활성탄의 입자 크기는 350 μm~400 μm, 비표면적은 617 m2/g 이였으며, 담지 된 티타늄은 TiO2 anatase 형태와 rutile 형태가 주를 이루고 있음을 알 수 있었다. 구형활성탄에 담지 된 TiO2는 약 6 wt%로 균일한 분산도로 구형활성탄 표면에 담지 된 것을 EPMA 분석을 통해 알 수 있었다. 더욱이 ESR 분석을 통하여 간접적인 광촉매 활성을 확인할 수 있었으며, 따라서 이러한 결과들을 바탕으로 유동상 광반응조를 이용한 HA(humic acid) 광분해 반응에 적용하였다. 그 결과, 제거 효율이 약 70% 정도로 높게 나타났을 뿐만 아니라 반응 중에도 Ti-구형활성 탄의 강도가 계속 유지되어 유동상 반응에서의 광분해 촉매로서 활용가능성을 보여주었다.
In this sturdy, spherical activated carbon(SPAC) contained TiO2 was made by ion-exchanged treatment and heat treatment for applying fluidizing bed system. The ion-exchange resin was treated by TiCl3 aqueous solution. The treated resin and raw resin were heat-treated under nitrogen condition to convert into Ti-SPAC. During the heat-treatment, burn-off weight amounts and the element were measured by means of TGA and TGA/MS, individually. The physicochemical properties of Ti-SPAC was characterized by means of XRD, SEM, EDS, BET, EPMA, ESR, intensity and titanium content. The Ti-SPAC had spherical shape with diameter size about 350 μm~400 μm and 617 m2/g specific surface area. Structure of TiO2 in Ti-SPAC was anatase and rutile form. Also, TiO2 on SPAC were found that the TiO2 were uniformly distributed through EPMA analysis. Moreover, the Ti-SPAC showed indirect photocatalyst activity estimation through ESR analysis, characteristics of photocatalyst potentially. Over all results, Ti-SPAC was used in fluidizing bed UV/photocatalyst system to remove HA(Humic Acid). That results were HA removal efficiency was about 70% and Ti-SPAC intensity was preserved during reaction. Ti-SPAC showed practical possibility as photocatalyst in fluidizing bed system.
References
Herrmann JM, Catal. Today, 24(1-2), 157 (1995)
Mahmoodi NM, Arami M, Limaee NY, Tabrizi NS, J. Colloid Interface Sci., 295(1), 159 (2006)
Lee S, Lee K, J. Ind. Eng. Chem., 10(3), 492 (2004)
Turchi CS, Ollis DF, J. Phys. Chem., 92(23), 6852 (1988)
Louise EB, Mary D, Water Res., 27(7), 1209 (1993)
McCarthy JF, “Bioavailability and Toxicity of Metals and Hydrophobic Organic Contaminants. In Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants,” American Chemical Society, Washington. DC 263-279 (1989)
Singer PC, Water Sci. Technol., 40(9), 25 (1999)
Ministry of Environmental(Korea), data base of water quality
Wang GS, Liao CH, Wu FJ, Chemosphere, 42, 379 (2001)
Wu C, Yue Y, Deong X, Hua W, Gao Z, Catal. Today, 93, 863 (2004)
Kim TK, Lee MN, Lee SH, Park YC, Jung CK, Boo JH, Thin Solid Films, 475(1-2), 171 (2005)
Yoneyama H, Torimoto T, Catal. Today, 58(2-3), 133 (2000)
Torimoto T, Ito S, Kuwabata S, Yoneyama H, Environ. Sci. Technol., 30, 1275 (1996)
Banwell CN, McCash EM, Fundamentals of molecular spectroscopy. McGRAW-HILL BOOK COMPANY., 254-257 (1994)
Mahmoodi NM, Arami M, Limaee NY, Tabrizi NS, J. Colloid Interface Sci., 295(1), 159 (2006)
Lee S, Lee K, J. Ind. Eng. Chem., 10(3), 492 (2004)
Turchi CS, Ollis DF, J. Phys. Chem., 92(23), 6852 (1988)
Louise EB, Mary D, Water Res., 27(7), 1209 (1993)
McCarthy JF, “Bioavailability and Toxicity of Metals and Hydrophobic Organic Contaminants. In Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants,” American Chemical Society, Washington. DC 263-279 (1989)
Singer PC, Water Sci. Technol., 40(9), 25 (1999)
Ministry of Environmental(Korea), data base of water quality
Wang GS, Liao CH, Wu FJ, Chemosphere, 42, 379 (2001)
Wu C, Yue Y, Deong X, Hua W, Gao Z, Catal. Today, 93, 863 (2004)
Kim TK, Lee MN, Lee SH, Park YC, Jung CK, Boo JH, Thin Solid Films, 475(1-2), 171 (2005)
Yoneyama H, Torimoto T, Catal. Today, 58(2-3), 133 (2000)
Torimoto T, Ito S, Kuwabata S, Yoneyama H, Environ. Sci. Technol., 30, 1275 (1996)
Banwell CN, McCash EM, Fundamentals of molecular spectroscopy. McGRAW-HILL BOOK COMPANY., 254-257 (1994)