Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 15, 2006
Accepted August 11, 2006
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
PAN계 탄소섬유 강화 종이의 물리적 특성 및 전기전도도
Physical Properties and Electrical Conductivity of PAN-based Carbon Fiber Reinforced Paper
충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220
Department of Chemical Engineering, Chungnam National University, 220, Gung-dong, Yuseong-gu, Daejeon 305-764, Korea
Korean Chemical Engineering Research, December 2006, 44(6), 602-608(7), NONE Epub 2 January 2007
Download PDF
Abstract
폴리아크릴로니트릴(PAN)계 탄소섬유와 목재펄프를 이용하여 탄소섬유의 길이와 함량 및 강화 종이의 평량을 달리하여 각각 탄소섬유 강화 종이를 제조한 후 탄소섬유와 펄프섬유와의 접착특성 및 강화 종이의 물리적 특성과 전기전도도를 조사하였다. 탄소섬유 강화 종이의 형성은 탄소섬유와 펄프섬유의 계면에서의 화학적 결합이라기보다는 물리적인 얽힘과 접착이었으며, 탄소섬유의 첨가량을 증가시키면 강화 종이의 두께와 인열강도는 증가하는 반면 인장강도와 파열강도는 감소하였다. 탄소섬유의 길이가 짧을수록 강화 종이 내에서 섬유의 분산성이 양호하였으나 가장 우수한 전기전도도는 탄소섬유의 길이가 10 mm일 때였다. 강화 종이의 전기전도도는 탄소섬유의 함량이 2 wt%일 때부터 급격히 증가하다가 8 wt% 이상이 되면 서서히 증가하는 S자형 곡선을 보였으며, 강화 종이의 평량 증가에 따라 선형적으로 비례하여 향상되었다. 따라서, 전기전도도와 물리적 특성이 우수한 강화 종이를 얻기 위해서는 탄소섬유의 함량을 증가시킴과 동시에 평량을 증가시키는 것이 바람직하다.
Carbon fiber (CF) reinforced papers using polyacrylonitrile (PAN) based CF and wood pulp were prepared by varying the lengths and the concentrations of CF, and the basis weight of paper to investigate adhesive state between CF and pulp, and physical properties and electrical conductivity of the paper. The reinforcement was caused by physical entanglement and adhesion at the interface of the different fibers rather than by chemical bonds. The tear strength and the thickness of the paper increased as increasing the concentration of CF, while the tensile and the burst strength of the paper decreased. The improved dispersion of CF in the paper was obtained from mixing shorter CF, but the maximum electrical conductivity of the paper was gained from mixing 10 mm chopped CF. The electrical conductivity of the paper increased sharply from 2 wt% to 8 wt% of CF showing S-curve, and increased linearly as increasing the basis weight of the paper. Therefore, in order to improve the electrical conductivity and the physical property of the paper, the increase of basis weight of the paper is also important as the increase of CF content in the paper.
References
Murday JS, Dominguez DD, Synth. Met., 9, 397 (1984)
Agari Y, Ueda A, Nagai SJ, Appl. Polym. Sci., 52(9), 1223 (1994)
Das NC, Chaki TK, Khastgir D, Chakraborty A, Adv. Polym. Technol., 20(3), 226 (2001)
Roy D, Jana PB, De SK, Gupta BR, Chaudhuri S, Pal AK, J. Mater. Sci., 31(20), 5313 (1996)
Wang XF, Wang YL, Jin ZH, J. Mater. Sci., 37(1), 223 (2002)
Park JM, Lee SI, Kim JW, Yoon DJ, J. Colloid Interface Sci., 244(2), 410 (2001)
Kio K, Hayashi Y, “Sheet-like Electric Heater and a Sheetlike Thermal Sensing Element Using Carbon Fiber Mixed Paper”, U.S. Patent No. 5,582,757 (1996)
Itabashi M, “Manufacture of Conductive Heating Paper,” J.P. Patent No. 2000150117 (2000)
Jang J, Ryu SK, Korean Chem. Eng. Res., 42(5), 598 (2004)
Tim P, Larry T, TAPPI, 73, 86 (1990)
Paper and board - determination of air permeance (medium range) part3: bendtsen method, ISO 5636-3 (1992)
Lee YK, Polym.(Korea), 9, 175 (1985)
Gardner KH, Blackwell J, Biopolymers, 13(10), 1975 (1974)
Blackwell J, Kolpek FJ, Gardner KH, Tappi, 61(1), 71 (1978)
Krekel G, Huttinger KJ, Hoffman WP, J. Mater. Sci., 29(13), 3461 (1994)
Bristow JA, Kolseth P, “Paper Structure and Properties,” Marcel Dekker. Inc., 311 (1986)
Clark J, Tappi, 45, 628 (1962)
Miyauchi S, Togashi E, J. Appl. Polym. Sci., 30, 2743 (1985)
Cho JW, Choi JS, J. Appl. Polym. Sci., 77(9), 2082 (2000)
Zhang C, Yi XS, Yui H, Asai S, Sumita M, J. Appl. Polym. Sci., 69(9), 1813 (1998)
Lozano K, Bonilla-Rios J, Barrera EV, J. Appl. Polym. Sci., 80(8), 1162 (2001)
James C, James, d’A. C., Pulp technology and treatment for paper, 430 (1985)
Agari Y, Ueda A, Nagai SJ, Appl. Polym. Sci., 52(9), 1223 (1994)
Das NC, Chaki TK, Khastgir D, Chakraborty A, Adv. Polym. Technol., 20(3), 226 (2001)
Roy D, Jana PB, De SK, Gupta BR, Chaudhuri S, Pal AK, J. Mater. Sci., 31(20), 5313 (1996)
Wang XF, Wang YL, Jin ZH, J. Mater. Sci., 37(1), 223 (2002)
Park JM, Lee SI, Kim JW, Yoon DJ, J. Colloid Interface Sci., 244(2), 410 (2001)
Kio K, Hayashi Y, “Sheet-like Electric Heater and a Sheetlike Thermal Sensing Element Using Carbon Fiber Mixed Paper”, U.S. Patent No. 5,582,757 (1996)
Itabashi M, “Manufacture of Conductive Heating Paper,” J.P. Patent No. 2000150117 (2000)
Jang J, Ryu SK, Korean Chem. Eng. Res., 42(5), 598 (2004)
Tim P, Larry T, TAPPI, 73, 86 (1990)
Paper and board - determination of air permeance (medium range) part3: bendtsen method, ISO 5636-3 (1992)
Lee YK, Polym.(Korea), 9, 175 (1985)
Gardner KH, Blackwell J, Biopolymers, 13(10), 1975 (1974)
Blackwell J, Kolpek FJ, Gardner KH, Tappi, 61(1), 71 (1978)
Krekel G, Huttinger KJ, Hoffman WP, J. Mater. Sci., 29(13), 3461 (1994)
Bristow JA, Kolseth P, “Paper Structure and Properties,” Marcel Dekker. Inc., 311 (1986)
Clark J, Tappi, 45, 628 (1962)
Miyauchi S, Togashi E, J. Appl. Polym. Sci., 30, 2743 (1985)
Cho JW, Choi JS, J. Appl. Polym. Sci., 77(9), 2082 (2000)
Zhang C, Yi XS, Yui H, Asai S, Sumita M, J. Appl. Polym. Sci., 69(9), 1813 (1998)
Lozano K, Bonilla-Rios J, Barrera EV, J. Appl. Polym. Sci., 80(8), 1162 (2001)
James C, James, d’A. C., Pulp technology and treatment for paper, 430 (1985)