ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 15, 2006
Accepted December 19, 2006
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Methane으로부터 13C 동위원소 분리를 위한 회분식 및 연속식 극저온 증류공정모사 비교 연구

A Comparison Study between Batch and Continuous Process Simulation for the Separation of Carbon-13 Isotope by Cryogenic Distillation

동국대학교 화학공학과, 100-715 서울시 중구 필동 3가 26
Department of Chemical Engineering, Dongguk University, 26 3-ga Pil-dong, Chung-gu, Seoul 100-715, Korea
sjpark@dongguk.edu
Korean Chemical Engineering Research, February 2007, 45(1), 57-66(10), NONE Epub 5 March 2007
downloadDownload PDF

Abstract

일반적으로 천연가스는 대부분의 12C로 구성되어 있고 탄소 동위원소 13C 성분이 약 1.1%가 분포되어 있다. 13C은 안정한 동위원소로써 의학, 약리학, 농학 등 많은 분야에 트레이서 물질로 사용되는 중요한 원소이다. 따라서 가스 성분의 탄소로부터 13C를 분리 및 농축하는 기술 개발은 고부가가치 제품을 생산할 수 있으며, 새로운 탄소 소재 산업의 개발 가능성을 부여할 것이다. 안정적인 13C 동위원소를 극저온 증류로 분리하는 일반적인 두가지 방법이 있는데 첫번째는 천연가스로부터 13CH4 동위원소를 농축하는 방법이고 또 다른 방법은 CH4와 H2O의 화학 반응을 통하여 얻어진 13CO를 증류를 통해 농축하는 방법이다. 본 연구에서는 LNG 또는 NG로부터 13C 동위원소를 분리 농축하기 위하여 상용 공정모사기를 사용하여 Rigorous한 극저온 증류 공정모사를 수행하고 검토하였다. 13CH4와 12CH4간의 상대 휘발도나 분리도의 값이 매우 작아 공정 설계 및 13C의 효과적인 분리 및 농축 작업은 특수한 전략 및 Feasibility Study가 필요하다. SRK 상태방정식의 Acentric factor를 증기압 데이터에 부합하는 Acentric factor 값을 구하여 농축 전략 및 Feasibility Study에 따른 최적화된 공정 조건으로 극저온 증류를 통한 13C의 분리 효율 및 농축 경향을 예측할 수 있었다. 회분식 및 연속식 극저온 증류공정의 여러 가지 운전 전략을 연구하고 공정의 기본 설계를 제안하였다. 본 연구에서는 13C의 극저온 분리의 효과적인 설계 및 운전 방법을 제시할 수 있었다.
Natural gases generally consist of mainly 12C and about 1.1% of 13C. It is well known that a stable carbon isotope, 13C, has been widely used for the applications of medical, pharmaceutical, and agricultural tracers. As a result, the development of the separation and concentrating technology of 13C can cause of high value-added products and the possibility of the generation of new carbon materials. In general, there are two kinds of approaches to obtain a stable 13C isotope by the separation of cryogenic distillation. One is to obtain a concentrated 13CH4 isotope from natural gas. Another approach is to get concentrated 13CO by distillation followed by a chemical reaction of CH4 and H2O. In this study, rigorous process simulations of the cryogenic distillation have been performed and analyzed for the concentrated separation of 13C isotopes from LNG and NG by using commercial process simulator. Due to the very small differences of relative volatilities and separabilities of 12C and 13C, the process design and operation of effective separation and concentration of 13C need special strategies and feasibility studies. Utilization of vapor pressure data to acentric factor in SRK equation of state and optimized process conditions have been able to predict for the effective of the separation yield and concentration of 13C for the cryogenic distillation. The various operation strategies for both batch and continuous cryogenic distillation are also studied and suggested for the basic design of the process. Development of this study can provide a tool for the effective design and operation of the cryogenic separation of 13C.

References

Johns TF, Proc. Phys. Soc., B66, 808 (1953)
McInteer BB, Sep. Sci. Technol., 15(3), 491 (1980)
“A Method for the Separation of Carbon Isotopes by Chemical Exchange Method,” Europ. Pat. 0042877 (1980)
Vasaru G, Ghete P, Cocacci I, Atanasiu M, “Separation of Carbon-13 by Thermal Diffusion,” Stable Isotope Life Sci. Proc. Tech. Comm. Meet Mod Trends Biol. Appl. Stable Isot., 39-52 (1977)
“Method of Centrifugal Enrichment of Carbon-13 Isotope in CO2 Form,” RU 2153388 (2000)
Hirose Y, Tachibana H, Soh H, Kag. Kog. Ronbunshu, 223(3), 527 (1996)
Douglas JM, “Conceptual Design of Chemical Processes,” McGraw-Hill Book Co. (1988)
Xopowulov AB, Khimicheskay Promyshlennost Moscow, 4, 229 (1999)
Smith JM, Van Ness HC, Abbott MM, “Introduction to Chemical Engineering Thermodynamics,” McGraw-Hill Book Co. (1996)
Prausnitz JM, Lichtenthaler RN, Edmundo GA, “Molecular Thermodynamics of Fluid-Phase Equilibria,” Prentice Hall (1999)
Tokyo Gas Report, EIT No. 32, The Utilization of LNG Cryogenic Energy (2000)
Bertucco A, Mio C, Fluid Phase Equilib., 117(1-2), 18 (1996)
King CJ, “Separation Processes,” McGraw-Hill Book. Co. (1980)
Valderrama JO, Silva A, Korean J. Chem. Eng., 20(4), 709 (2003)
Cho JH, Korean Chem. Eng. Res., 44(2), 129 (2006)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로