ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 31, 2006
Accepted January 9, 2007
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

다변량 통계 분석을 이용한 결측 데이터의 예측과 센서이상 확인

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

포항공과대학교 화학공학과, 794-784 경북 포항시 남구 효자동 산 31
Department of Chemical Engineering, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang 790-784, Korea
iblee@postech.ac.kr
Korean Chemical Engineering Research, February 2007, 45(1), 87-92(6), NONE Epub 5 March 2007
downloadDownload PDF

Abstract

최근 공정의 이상을 감지하고 진단하기 위한 공정 모니터링 시스템의 개발이 공정 시스템 분야에서 많은 주목을 받고 있다. 공정으로부터 얻어지는 데이터는 공정의 특성에 대한 유용한 정보를 제공하고 이는 공정의 모델링과 모니터링 그리고 제어에 사용된다. 현대의 화학 및 환경 공정은 고차원적인 특성과 변수간의 강한 상관관계와 동특성 그리고 비선형적 특성을 가지고 있어 모델 기반 접근을 통해 공정을 분석하는 것을 쉽지 않다. 이러한 모델 기반 접근의 한계를 극복하기 위해 많은 시스템 엔지니어와 연구자들이 주성분 분석법(principal component analysis, PCA) 또는 부분 최소 자승법(partial least squares, PLS)과 같은 다변량 분석을 접목한 통계 기반 접근법에 초점을 맞추고 있다. 또한 동특성, 비선형성 등과 같은 특성을 가진 공정에 적용하기 위해 많은 다변량 분석법들이 보완되었다. 여기에서는 동적 주성분 분석법(dynamic PCA)과 케노니컬 변수 분석법(canonical variate analysis)을 이용한 결측 데이터의 예측법과 공정 변수의 복원을 통한 센서 오작동의 판별법에 대해 언급해 보고자 한다.
Recently, developments of process monitoring system in order to detect and diagnose process abnormalities has got the spotlight in process systems engineering. Normal data obtained from processes provide available information of process characteristics to be used for modeling, monitoring, and control. Since modern chemical and environmental processes have high dimensionality, strong correlation, severe dynamics and nonlinearity, it is not easy to analyze a process through model-based approach. To overcome limitations of model-based approach, lots of system engineers and academic researchers have focused on statistical approach combined with multivariable analysis such as principal component analysis (PCA), partial least squares (PLS), and so on. Several multivariate analysis methods have been modified to apply it to a chemical process with specific characteristics such as dynamics, nonlinearity, and so on. This paper discusses about missing value estimation and sensor fault identification based on process variable reconstruction using dynamic PCA and canonical variate analysis.

References

MacGregor JF, Kourti T, Control Eng. Practice, 3(3), 403 (1995)
Choi SW, Lee C, Lee JM, Park JH, Lee IB, Chem. Int. Lab. Sys., 75, 55 (2005)
Cho JH, Lee JM, Choi SW, Lee D, Lee IB, Chem. Eng. Sci., 60(1), 279 (2005)
Ku W, Storer RH, Georgakis C, Chem. Int. Lab. Sys., 30, 179 (1995)
Nelson PRC, Taylor PA, MacGregor JF, Chem. Int. Lab. Sys., 35, 45 (1996)
Russell EL, Chiang LH, Braatz RD, Chem. Int. Lab. Sys., 51, 81 (2000)
Negiz A, Cinar A, AIChE J., 43(8), 2002 (1997)
Arteaga F, Ferrer A, J. Chemometr., 16, 408 (2002)
Lee C, Choi SW, Lee IB, J. Process Control, 16(7), 747 (2006)
Larimore WE, “Canonical Variate Analysis in Identification, Filtering, and Adaptive Control,” Proceedings of IEEE Conference on Decision and Control, Honolulu, Hawaii, 596-604 (1990)
Yoon SY, MacGregor JF, J. Process Control, 11(4), 387 (2001)
Willemain TR, Runger GC, J. Qual. Technol., 28, 31 (1996)
Marlin TE, Process Control, McGraw-Hill, New York (1995)
Conference report, “Abnormal Situation Detection and Projection Methods-industrial Applications,” Chem. Int. Lab. Sys., 76, 215-220 (2005)
Lee C, Choi SW, Lee JM, Lee IB, Ind. Eng. Chem. Res., 43(15), 4293 (2004)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로