ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 6, 2006
Accepted December 8, 2006
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

MCM-41을 이용한 LDPE-LLDPE-EVA 공중합체 혼합물의 접촉 열분해 반응에 미치는 Aluminium 첨가 효과

Effect of Aluminium Addition to MCM-41 on Catalytic Cracking of an LDPE-LLDPE-EVA Copolymer Mixture

공주대학교 화학공학부, 314-701 충남 공주시 신관동 182 1서울시립대학교 환경공학부, 130-743 서울시 동대문구 전농동 90 2전북대학교 자원에너지공학과, 561-756 전북 전주시 덕진구 덕진동 1가 664-14
Department of Chemical Engineering, Kongju National University, 182, Singwan-dong, Gongju, Chungnam 314-701, Korea 1Faculty of Environmental Engineering, University of Seoul, 90, Cheohnong-dong, Dongdaemun-gu, Seoul 130-743, Korea 2Department of Mineral Resources & Energy Engineering, Chonbuk National University, 664-14 1ga, Deokjin-dong, Jeonju, Jeonbuk 561-756, Korea
jkjeon@kongju.ac.kr
Korean Chemical Engineering Research, April 2007, 45(2), 117-123(7), NONE Epub 7 May 2007
downloadDownload PDF

Abstract

농업용 필름을 제조하는데 사용되는 EVA 공중합체, LDPE, LLDPE 혼합물의 접촉 열분해 반응에 있어서 MCM-41 촉매에 aluminium을 첨가가 생성물의 수율, 탄소 수 분포 등에 미치는 영향을 조사하였다. Aluminium은 direct 및 post 방법으로 첨가하였고, 열분해 반응은 액상 접촉과 기상 접촉 반응 결과를 비교하였다. Direct 또는 post 방법으로 aluminium이 첨가된 MCM-41에서 aluminium 첨가량이 증가할수록 Lewis 산점이 증가하여 전체 산점의 양이 증가하였는데 post 방법으로 제조된 촉매에서 산점의 양이 더 많이 증가하였다. 액상 접촉 반응에서 aluminium의 양이 증가하면 가벼운 탄화수소가 많이 생기는데, C5-C12 범위의 탄소화합물의 생성에 Al-MCM-41-P 촉매가 더 효과가 컸다. 기상 접촉 반응에서는 Al-MCM-41-D와 Al-MCM-41-P사이의 차이가 액상 접촉 반응시보다 상대적으로 적게 나타났으나, 액상접촉 반응에 비해 C13-C32 범위의 탄화수소가 크게 감소했음을 알 수 있다.
The effect of aluminium addition to MCM-41 on product yield and carbon number distribution was investigated in the catalytic cracking of a polymer mixture, LDPE, LLDPE, and EVA copolymer, with a composition similar to that found in real agricultural film wastes. Al-MCM-41 catalyst synthesized by post-synthetic grafting method (Al-MCM-41-P) as well as Al-MCM-41 catalyst synthesized by direct sol-gel (Al-MCM-41-D). The catalytic cracking of polymer mixture was carried out in vapor phase contact as well as in liquid phase contact. The amount of acid sites increased with aluminium addition by post method as well as direct method, which was seemed to be due to Lewis acid sites. In liquid phase catalytic cracking, the yield of light hydrocarbon fraction increased with aluminium addition. The effect of aluminium addition on production of C5-C12 hydrocarbons over Al-MCM-41-P catalysts was greater than that over Al-MCM-41-D catalysts. In the case of vapor phase catalytic cracking, the effect of aluminium addition was smaller than that of liquid phase catalytic cracking. The selectivity to C13-C32 hydrocarbons was smaller in vapor phase catalytic cracking.

References

Sharratt PN, Lin YH, Garforth AA, Dwyer J, Ind. Eng. Chem. Res., 36(12), 5118 (1997)
Kim SS, Kim S, Chem. Eng. J., 98, 53 (2003)
Faravelli T, Pinciroli M, Pisanol F, Bozzano G, Dente M, Ranzi E, J. Anal. Appl. Pyrolysis, 60, 103 (2001)
Vitolo S, Bresci B, Seggiani M, Gallo MG, Fuel, 80, 17 (2001)
Dao LH, Haniff M, Houle A, Lamothe D, In: Soltes and T. A. Milne (Eds), Pyrolysis Oils from Biomass: Producing, Analyzing and Upgrading, ACS Symposium Series 376, Washington DC, 329-341 (1998)
Takuma K, Uemichi Y, Ayame A, Appl. Catal. A: Gen., 192(2), 273 (2000)
Park YK, Kim JS, Jeon JK, Lim JE, Kim JM, Yoo KS, Polym.(Korea), 29(2), 122 (2005)
Park YK, MS Thesis, KAIST (1994)
Park HJ, Jeon JK, Yim JH, Dong JI, Yoo KS, Park YK, J. Ind. Eng. Chem., in press (2007)
Kim JM, Ko CH, Ryoo R, Appl. Chem. Eng., 2, 1137 (1996)
Lee SH, Lee DK, Park SG, 2003 Annual Summer Conference, The Korean Institute of Electrical and Electronic Material Engineers, 1231-1234 (2003)
Kim JH, Niwa M, J. Res. Inst. Catal., 18(1), 45 (2003)
Chon H, Seo G, Int. Catal., 4th ed., Hanrimwon Publishing Co., Seoul (2002)
Song SK, Wang Y, Ihm SK, Catal. Today, 111(3-4), 194 (2006)
Chakraborty B, Viswanathan B, Catal. Today, 49(1-3), 253 (1999)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로