Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 3, 2006
Accepted December 8, 2006
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
인공신경망을 이용한 시비된 분뇨로부터의 암모니아 방출량 예측
Prediction of Ammonia Emission Rate from Field-applied Animal Manure using the Artificial Neural Network
한경대학교 화학공학과 FACS 연구실 1한경대학교 식물생명환경과학부, 456-749 경기도 안성시 석정동 67
FACS Lab., Dept. Chemical Engineering, University of Hankyung, Korea 1Faculty of Plant Life and Environmental Sciences, University of Hankyung, 67 Seokjung-dong, Anseong, Gyonggi 456-749, Korea
Korean Chemical Engineering Research, April 2007, 45(2), 133-142(10), NONE Epub 7 May 2007
Download PDF
Abstract
화학비료의 과다사용으로 환경오염의 문제가 심각해 지면서 친환경 농자재(목초재 또는 축산분뇨 등)를 사용하는 유기농업의 필요성이 대두되어 왔다. 이러한 친환경 농자재의 시용량은 작물 종류별, 토양 종류별, 계절별, 재배환경 등에 따라 결정되어져야 한다. 유기비료로서 축산분뇨량의 효율적 사용과 축산분뇨로부터의 암모니아 방출량 저감을 위해서는 먼저 축산분뇨의 경작지 시비 후 암모니아 방출모델이 제시되어야 한다. 그리고 암모니아 방출에 영향이 큰 인자들을 찾아내어 이 인자들을 변화시킴으로서 암모니아 방출량을 감소시킬 수 있을 것이다. 이 연구에서는 인공신경망(artificial neural network) 기법을 이용하여 시비된 돈분의 암모니아 휘산량을 예측한다. 유럽지역에서 얻은 암모니아 방출 실험데이터(ALFAM database)를 바탕으로, 암모니아 손실 영향인자에 따른 암모니아 방출량을 Michaelis-Menten 모델식을 이용하여 예측한다. 이 모델식의 모델인자(암모니아 최대 방출량과 암모니아 최대 방출량의 50%에 도달하는 시간)는 feedforward-backpropagation 인공신경망 기법으로 예측하였고, 가중치 분할법(weight partitioning method)으로 암모니아 손실에 미치는 총 15개의 영향인자의 상대적인 중요도를 분석하였다. 그 결과 암모니아 방출량은 기후에 따라 크게 좌우되고, 돈분의 상태도 상당한 영향을 주고 있다.
As the environmental pollution caused by excessive uses of chemical fertilizers and pesticides is aggravated, organic farming using pasture and livestock manure is gaining an increased necessity. The application rate of the organic farming materials to the field is determined as a function of crops and soil types, weather and cultivation surroundings. When livestock manure is used for organic farming materials, the volatilization of ammonia from field-spread animal manure is a major source of atmospheric pollution and leads to a significant reduction in the fertilizer value of the manure. Therefore, an ammonia emission model should be presented to reduce the ammonia emission and to know appropriate application rate of manure. In this study, the ammonia emission rate from field-applied pig manure is predicted using an artificial neural network (ANN) method, where the Michaelis-Menten equation is employed for the ammonia emission rate model. Two model parameters (total loss of ammonia emission rate and time to reach the half of the total emission rate) of the model are predicted using a feedforward-backpropagation ANN on the basis of the ALFAM (Ammonia Loss from Field-applied Animal Manure) database in Europe. The relative importance among 15 input variables influencing ammonia loss is identified using the weight partitioning method. As a result, the ammonia emission is influenced mush by the weather and the manure state.
Keywords
References
Kim DS, Hi-Tech Jeong-Bo, Seoul (1994)
Park YH, Lee Y, No JS, Park KR, Park MH, National Institute of Agricultural Science and Technology(NAIST), Final report (2004)
ALFAM (Ammonia Loss from Field-applied Animal Manure, http://www.alfam.dk), An EU-supported Project to Co-ordinate and Disseminate Information on the Losses of Ammonia from Field- Applied Animal Manures, Final Report (2001)
ECETOC, Ammonia Emissions to Air in Western Europe, Technical Report, no. 62, European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Brussels, Belgium, 196 (1994)
Garson, Interpreting Neural Network Connection Weights, AI Expert, 6(7), 47-51 (1991)
Goh ATC, J. Geotech. Eng., ASCE, 120(9), 1467 (1994)
Hajmeer MN, Basheer IA, Najjar YM, Int. J. Food Microbiology, 34, 51 (1997)
Misselbrook TH, van der Weerden TJ, Pain BF, Jarvis BF, Chambers BJ, Smith KA, Phillips VR, Demmers TGM, Atmos. Environ., 34, 871 (2000)
Misselbrook TH, Nicholsen FA, Chambers BJ, Bioresour. Technol., 96, 159 (2005)
Molga EJ, Chem. Eng. Process., 42(8-9), 675 (2003)
Moon YS, Lim YI, Kim TW, Spring meeting of KIChE, April 21, 2006, DaeGoo, Korea (2006)
Ni J, J. Agric. Eng. Res., 72, 1 (1999)
Plochl M, Atms. Environ., 35, 5833 (2001)
Schultz A, Wieland R, Com. Elec. Agr., 18, 73 (1997)
Sogaad HT, Sommer SG, Hutching NJ, Huijsmans JFM, Bussink DW, Nicholson F, Atmos. Environ., 36, 3309 (2002)
Sommer SG, Ersboll AK, J. Environ. Qual., 23, 493 (1994)
Sommer SG, Hutching NJ, Eur. J. Agronomy, 15, 1 (2001)
Sommer SG, Hutchings NJ, Carton OT, DIAS Report No. 60, Danish Ins. Agr. Sci. (DIAS), Denmark (2001)
Sommer SG, Genermont S, Cellier P, Hutchings NJ, Olesen JE, Morvan T, Europ. J. Agronomy, 19, 456 (2003)
Zhao DW, Wang AP, Atmos. Environ., 28(4), 689 (1994)
Park YH, Lee Y, No JS, Park KR, Park MH, National Institute of Agricultural Science and Technology(NAIST), Final report (2004)
ALFAM (Ammonia Loss from Field-applied Animal Manure, http://www.alfam.dk), An EU-supported Project to Co-ordinate and Disseminate Information on the Losses of Ammonia from Field- Applied Animal Manures, Final Report (2001)
ECETOC, Ammonia Emissions to Air in Western Europe, Technical Report, no. 62, European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Brussels, Belgium, 196 (1994)
Garson, Interpreting Neural Network Connection Weights, AI Expert, 6(7), 47-51 (1991)
Goh ATC, J. Geotech. Eng., ASCE, 120(9), 1467 (1994)
Hajmeer MN, Basheer IA, Najjar YM, Int. J. Food Microbiology, 34, 51 (1997)
Misselbrook TH, van der Weerden TJ, Pain BF, Jarvis BF, Chambers BJ, Smith KA, Phillips VR, Demmers TGM, Atmos. Environ., 34, 871 (2000)
Misselbrook TH, Nicholsen FA, Chambers BJ, Bioresour. Technol., 96, 159 (2005)
Molga EJ, Chem. Eng. Process., 42(8-9), 675 (2003)
Moon YS, Lim YI, Kim TW, Spring meeting of KIChE, April 21, 2006, DaeGoo, Korea (2006)
Ni J, J. Agric. Eng. Res., 72, 1 (1999)
Plochl M, Atms. Environ., 35, 5833 (2001)
Schultz A, Wieland R, Com. Elec. Agr., 18, 73 (1997)
Sogaad HT, Sommer SG, Hutching NJ, Huijsmans JFM, Bussink DW, Nicholson F, Atmos. Environ., 36, 3309 (2002)
Sommer SG, Ersboll AK, J. Environ. Qual., 23, 493 (1994)
Sommer SG, Hutching NJ, Eur. J. Agronomy, 15, 1 (2001)
Sommer SG, Hutchings NJ, Carton OT, DIAS Report No. 60, Danish Ins. Agr. Sci. (DIAS), Denmark (2001)
Sommer SG, Genermont S, Cellier P, Hutchings NJ, Olesen JE, Morvan T, Europ. J. Agronomy, 19, 456 (2003)
Zhao DW, Wang AP, Atmos. Environ., 28(4), 689 (1994)