ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 10, 2007
Accepted February 22, 2007
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

다중공 평판형 셀기기에서 하이드레이트 생산실험 분석연구

An Experimental Analysis of Hydrate Production using Multi-Well, Plate-Type Cell Apparatus

한양대학교 공과대학 지구환경시스템공학과, 133-791 서울시 성동구 행당동 17 1한국석유공사, 431-711 경기도 안양시 동안구 관양동 1588-14
Dept. of Geoenvironmental System Eng., Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea 1Korea National Oil Corporation, 1588-14 Gwanyang-dong, Dongan-gu, Anyang, Gyonggi 431-711, Korea
Korean Chemical Engineering Research, June 2007, 45(3), 304-309(6), NONE Epub 25 June 2007
downloadDownload PDF

Abstract

본 연구에서는 감압법 및 열자극법에 의한 메탄하이드레이트 생산실험을 수행하기 위해 고압의 다중공 평판형 셀기기를 설계·제작하였다. 이 실험장비를 이용하여 고투과성 미고결 시료 공극시스템에서 감압법과 열자극법에 의한 생산실험을 수행하여 생산메카니즘을 분석하였다. 감압법에 의한 생산실험 결과, 일반 가스전과는 달리 하이드레이트 해리에 의한 공극내에서의 소스효과로 인해 일시적으로 압력이 상승하고 또한 흡열반응으로 인해 온도가 하강함을 확인 하였으며, 열자극 생산실험을 수행한 결과에서는 감압법의 경우 열자극법에 비해 해리속도가 느리게 진행되어 가스생산이 낮은 상태로 지속되는 것으로 나타났다. 한편, 열자극법 중 열을 가한 후 곧바로 생산하는 경우, 주입지점 주변에서만 해리되고 또한 그 지역에서만 투과도가 커지는 것으로 나타났으며, 생산초반 이후 해리속도는 soaking까지 시행한 경우에 비해 해리가 느리게 진행됨을 알 수 있다. 한편, 본 연구의 낮은 하이드레이트 포화도를 갖는 미고 결시료 공극시스템에서 열자극법의 적정 soaking 시간 규명실험을 통해 압력과 생산거동을 고찰하였다. 그 결과, 6분간 soaking 한 경우, 온도 하강에 의한 하이드레이트의 재형성으로 2분 및 4분간 soaking한 경우보다 낮은 회수율을 보였다. 본 연구의 실험결과는 향후 높은 하이드레이트 포화도를 갖는 고결 시료 공극시스템에서의 실험을 통해 더욱 확연히 드러날 것으로 예상된다.
In this study, the『Multi Well Plate-type cell Apparatus』was designed and setup for performing the producing experiments of methane hydrate by depressurization, heat stimulating methods. In order to characterizing the producing mechanism of hydrate through porous materials, the experiments for various producing methods have been conducted with the aid of the apparatus which has high permeability. In the experimental result of depressurization method, the pressure is temporarily increased unlikely conventional gas reservoir due to the sourcing effect of hydrate dissociation in the pore. Meanwhile, the temperature is decreased because of the endothermic reaction while hydrate is dissociated. In the experimental results of heat stimulating method, the dissociation in depressurization method is more slowly processed than that in thermal method, and hence, its gas production is lower. In the case of production right after heating, hydrate is dissociated only near injecting point and the permeability becomes greater at that area only. It infers that the more gas is produced during relatively earlier producing period. Since then, the hydrate is more slowly dissociated than the case of production after heating and soaking. This time, the performances of pressure and production obtained by thermal method have been analyzed in order to investigate the effect of soaking time on gas recovery. As a result, the gas recoveries in the case of 2 min and 4 min soaking are higher than case in 6 min soaking. This is reason that hydrate is reformed due to the decrease of temperature. It is expected that the experimental results obtained in this work may be more clearly explained by utilizing the lower permeable porous system with the greater hydrate saturation.

References

McGuire PL, paper SPE/DOE 10832 presented at the Unconventional Gas Recovery Symposium, Pittsburgh, PA, May, 373-387 (1982)
Bayles GA, Sawyer WK, Anada HR, Reddy S, Malone RD, Chem. Eng. Commun., 47(2), 225 (1986)
Kamath VA, Godbole SP, JPT, 39(11), 1379 (1987)
Selim MS, Sloan ED, SPERE, 245 (1990)
Islam MR, paper SPE 22924 presented at the 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Dallas, TX, Oct. (1991)
Verigin NN, Khabibullin IL, Khalikov GV, Izvest. Akad. Nauk. SSR, Mekhanika Zhidkosti Gaza, 1, 174 (1980)
Yousif MH, Li PM, Selim MS, Sloan ED, J. Inclusion Phenomena & Molecular Recognition Chem., 8, 77 (1990)
Yousif MH, Abass H, Selim MS, Sloan ED, SPERE, 69 (1991)
Seo YT, Kang SP, Lee H, Fluid Phase Equilib., 189(1-2), 99 (2001)
Sung WM, Lee HS, Kim SJ, Kang H, Energy Sources, 25(8), 845 (2003)
Sung W, Lee H, Yang H, Korean Chem. Eng. Res., 42(1), 115 (2004)
Lee H, Lee CS, Kang JM, HWAHAK KONGHAK, 41(2), 135 (2003)
Kang SP, Lee H, Lee CS, Sung WM, Fluid Phase Equilib., 185(1-2), 101 (2001)
Seo YT, Kang SP, Lee H, Lee CS, Sung WM, Korean J. Chem. Eng., 17(6), 659 (2000)
Sloan ED, Clathrate Hydrates of Natural Gases, 2nd ed., Marcel Dekker, Inc., New York (1998)
Sakamoto Y, Komai T, Kawabe Y, Tenma N, Yamaguchi T, ISOPE, 52 (2004)
Sung WM, Lee HS, Huh DG, paper SPE 59472 presented at Society of Petroleum Engineers Pacific Conference on Intergrated Modelling for Asset Managemant, Yokohama, Japan, April (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로