Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 29, 2007
Accepted April 7, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
AOT W/O 마이크로에멀젼을 이용한 할로겐화은 나노입자 제조에서 연속상 오일의 영향
Effect of Continuous Oil Phase on Preparation of Silver Halide Nanoparticles using AOT-Based W/O Microemulsions
동국대학교 생명·화학공학과, 160-715 서울시 중구 필동 3-26
Department of Chemical and Biochemical Engineering, Dongguk Univ., 3-26, Pil-dong, Chung-gu, Seoul 100-715, Korea
jongchoo@dongguk.edu
Korean Chemical Engineering Research, August 2007, 45(4), 364-371(8), NONE Epub 28 August 2007
Download PDF
Abstract
본 연구에서는 연속상의 종류가 AOT 계면활성제 시스템의 water-in-oil(W/O) 마이크로에멀젼을 이용한 할로겐화은 나노입자 제조에 미치는 영향에 관하여 살펴보았다. 이를 위하여 계면활성제, 연속상 오일, 무기염 수용액으로 이루어진 삼성분 시스템에 대하여 탄화수소의 연속상 종류를 변화하면서 상평형 실험을 수행한 결과, 탄화수소의 사슬 길이가 증가함에 따라 계면활성제 시스템의 친수성이 증가하여 단일상으로 존재하는 W/O 마이크로에멀젼 영역은 증가하였다. 상평형 실험결과에 의하여 결정된 단일상의 영역 내에서 W/O 마이크로에멀젼을 이용하여 할로겐화은 나노입자를 제조한 결과, 10 nm 전후의 구형에 가까운 비교적 균일한 입자가 형성되었다. 사용한 연속상 탄화수소의 사슬 길이가 증가할수록 마이크로에멀젼의 film rigidity를 감소시킴에 따라 마이크로에멀젼 사이의 교환 속도가 빨라져서 생성된 할로겐화은 나노입자의 크기는 작아지고 반면에 개수는 증가하였다. 또한 동일한 시스템에서 무기염 수용액의 조성을 증가시킴에 따라 생성된 나노입자의 크기는 증가함을 알 수 있었다.
Effects of continuous oil phase on silver halide nanoparticles were investigated where nanoparticles were prepared using two different types of water-in-oil(W/O) microemulsions containing silver and halide, respectively. Phase behavior experiments for ternary systems containing AOT surfactant, hydrocarbon oil and aqueous solution of an inorganic salt showed that the region of one phase W/O microemulsion was found to be broadened with an increase in the alkyl chain length of a hydrocarbon mainly due to an increase in hydrophilic nature of a surfactant. With the information of phase behavior experiments, silver halide nanoparticles were prepared using different AOT-based microemulsion systems and photomicrographs obtained by transmission electron microscopy indicated that about 10 nm size particles of relatively spherical shape were obtained. It has been found that an increase in alkyl chain length of a hydrocarbon results in a decrease in particle size because of higher intermicellar exchange rate among microemulsion drops. The average particle size was also found to increase with the inorganic salt composition of initial aqueous solution.
References
Shin SI, Oh SG, Prospect. Ind. Chem., 4(2), 40 (2001)
Lee MH, Oh SG, Yi SC, J. Colloid Interface Sci., 226(1), 65 (2000)
Kim TH, Kim JY, Kim MC, Park SJ, Park SK, Lim JC, HWAHAK KONGHAK, 41(2), 174 (2003)
Yun CY, Chah S, Kang SK, Yi J, Korean J. Chem. Eng., 21(5), 1062 (2004)
Kim SH, Kim KD, Song GY, Kim HT, HWAHAK KONGHAK, 41(1), 75 (2003)
Arraigned FJ, Osseo-Asare K, Colloids Surf., 50, 321 (1990)
Chang CL, Fogler HS, AIChE J., 42(11), 3153 (1996)
Chang CL, Fogler HS, Langmuir, 13(13), 3295 (1997)
Arriagada FJ, Osseoasare K, J. Colloid Interface Sci., 170(1), 8 (1995)
Taleb A, Petit C, Pilem MP, Chem. Mater., 9(4), 950 (1997)
Petit C, Lixon P, Pileni MP, J. Phys. Chem., 97(49), 12974 (1993)
Tanaka R, Shiromizu T, Langmuir, 17(26), 7995 (2001)
Li YC, Park CW, Langmuir, 15(4), 952 (1999)
Nagarajan R, Ruckenstein E, Langmuir, 16(16), 6400 (2000)
Nazario LMM, Crespo JPSG, Holzwarth JF, Hatton TA, Langmuir, 16(14), 5892 (2000)
Tojo C, Blanco MC, Lopez-Quintela MA, Langmuir, 14(24), 6835 (1998)
Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH, Langmuir, 17(10), 2900 (2001)
Kim DW, Oh SG, Lee JD, Langmuir, 15(5), 1599 (1999)
Bagwe RP, Khilar KC, Langmuir, 16(3), 905 (2000)
Jung KY, Kim MC, Park SJ, Lee ES, Lee MC, Park SK, Lim JC, J. Korean Ind. Eng. Chem., 13(6), 551 (2002)
Lim J, J. Korean Ind. Eng. Chem., 15(2), 216 (2004)
Sugimoto T, Shiba F, Colloids Surf. A: Physicochem. Eng. Asp., 164(2-3), 205 (2000)
Sugimoto T, Shiba F, J. Phys. Chem. B, 103(18), 3616 (1999)
Song H, Lee HS, Kwon DJ, Jung KY, Lim JC, Lee ES, Lee MC, Shin HS, J. Ind. Eng. Chem., 8(1), 82 (2002)
Lee MC, Lim JC, Lee ES, Ahn HC, Zvidentsova NS, Kolesnikov LV, Kolesnikova IL, J. Ind. Eng. Chem., 8(3), 247 (2002)
Andreeva AI, Krasovskii AN, Novikov DV, Russ. J. Appl. Chem., 72, 167 (1999)
Monnoyer P, Fonceca A, Nagy JB, Colloids Surf. A: Physicochem. Eng. Asp., 100, 233 (1995)
Bagwe RP, Khilar KC, Langmuir, 13(24), 6432 (1997)
Hou MJ, Shah DO, Langmuir, 3(6), 1086 (1987)
Bansal VK, Shah DO, O'Connell JP, J. Colloid Interface Sci., 75(2), 462 (1980)
Johnson K, Shah DO, J. Colloid Interface Sci., 107(1), 269 (1985)
Candau F, Leong YS, Pouyet G, Candau SJ, J. Colloid Interface Sci., 101(1), 167 (1984)
Gennes PG, Taupin C, J. Phys. Chem., 86, 2294 (1982)
Caillet C, Hebrant M, Tondre C, Langmuir, 14(16), 4378 (1998)
Sjoblom J, Lindberg R, Friberg SE, Adv. Colloid Interface Sci., 65, 125 (1996)
Modes S, Lianos P, J. Phys. Chem., 93(15), 5854 (1989)
Arriagada FJ, Osseo-Asare K, Colloids Surf., 69(2-3), 105 (1992)
Arriagada FJ, Osseo-Asare K, J. Colloid Interface Sci., 211(2), 210 (1999)
Lee MH, Oh SG, Yi SC, J. Colloid Interface Sci., 226(1), 65 (2000)
Kim TH, Kim JY, Kim MC, Park SJ, Park SK, Lim JC, HWAHAK KONGHAK, 41(2), 174 (2003)
Yun CY, Chah S, Kang SK, Yi J, Korean J. Chem. Eng., 21(5), 1062 (2004)
Kim SH, Kim KD, Song GY, Kim HT, HWAHAK KONGHAK, 41(1), 75 (2003)
Arraigned FJ, Osseo-Asare K, Colloids Surf., 50, 321 (1990)
Chang CL, Fogler HS, AIChE J., 42(11), 3153 (1996)
Chang CL, Fogler HS, Langmuir, 13(13), 3295 (1997)
Arriagada FJ, Osseoasare K, J. Colloid Interface Sci., 170(1), 8 (1995)
Taleb A, Petit C, Pilem MP, Chem. Mater., 9(4), 950 (1997)
Petit C, Lixon P, Pileni MP, J. Phys. Chem., 97(49), 12974 (1993)
Tanaka R, Shiromizu T, Langmuir, 17(26), 7995 (2001)
Li YC, Park CW, Langmuir, 15(4), 952 (1999)
Nagarajan R, Ruckenstein E, Langmuir, 16(16), 6400 (2000)
Nazario LMM, Crespo JPSG, Holzwarth JF, Hatton TA, Langmuir, 16(14), 5892 (2000)
Tojo C, Blanco MC, Lopez-Quintela MA, Langmuir, 14(24), 6835 (1998)
Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan WH, Langmuir, 17(10), 2900 (2001)
Kim DW, Oh SG, Lee JD, Langmuir, 15(5), 1599 (1999)
Bagwe RP, Khilar KC, Langmuir, 16(3), 905 (2000)
Jung KY, Kim MC, Park SJ, Lee ES, Lee MC, Park SK, Lim JC, J. Korean Ind. Eng. Chem., 13(6), 551 (2002)
Lim J, J. Korean Ind. Eng. Chem., 15(2), 216 (2004)
Sugimoto T, Shiba F, Colloids Surf. A: Physicochem. Eng. Asp., 164(2-3), 205 (2000)
Sugimoto T, Shiba F, J. Phys. Chem. B, 103(18), 3616 (1999)
Song H, Lee HS, Kwon DJ, Jung KY, Lim JC, Lee ES, Lee MC, Shin HS, J. Ind. Eng. Chem., 8(1), 82 (2002)
Lee MC, Lim JC, Lee ES, Ahn HC, Zvidentsova NS, Kolesnikov LV, Kolesnikova IL, J. Ind. Eng. Chem., 8(3), 247 (2002)
Andreeva AI, Krasovskii AN, Novikov DV, Russ. J. Appl. Chem., 72, 167 (1999)
Monnoyer P, Fonceca A, Nagy JB, Colloids Surf. A: Physicochem. Eng. Asp., 100, 233 (1995)
Bagwe RP, Khilar KC, Langmuir, 13(24), 6432 (1997)
Hou MJ, Shah DO, Langmuir, 3(6), 1086 (1987)
Bansal VK, Shah DO, O'Connell JP, J. Colloid Interface Sci., 75(2), 462 (1980)
Johnson K, Shah DO, J. Colloid Interface Sci., 107(1), 269 (1985)
Candau F, Leong YS, Pouyet G, Candau SJ, J. Colloid Interface Sci., 101(1), 167 (1984)
Gennes PG, Taupin C, J. Phys. Chem., 86, 2294 (1982)
Caillet C, Hebrant M, Tondre C, Langmuir, 14(16), 4378 (1998)
Sjoblom J, Lindberg R, Friberg SE, Adv. Colloid Interface Sci., 65, 125 (1996)
Modes S, Lianos P, J. Phys. Chem., 93(15), 5854 (1989)
Arriagada FJ, Osseo-Asare K, Colloids Surf., 69(2-3), 105 (1992)
Arriagada FJ, Osseo-Asare K, J. Colloid Interface Sci., 211(2), 210 (1999)