Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 17, 2007
Accepted June 6, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
질산염 이온의 전해 환원을 위한 Sn-modified Pt 전극 표면에서의 Sn 안정성 거동 특성
Stability Characteristics of Sn Species Behavior on Surface of a Sn-modified Pt Electrode for Electrolytic Reduction of Nitrate Ion
한국원자력연구소, 305-600 대전시 유성구 덕진동 150
Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-600, Korea
nkwkim@kaeri.re.kr
Korean Chemical Engineering Research, October 2007, 45(5), 433-441(9), NONE Epub 5 November 2007
Download PDF
Abstract
본 논문에서는 질산염 이온의 환원을 위한 Sn의 흡착 또는 전착을 가지는 Sn-modified Pt 전극의 안정성이 평가되었다. 전극의 불안정성의 원인을 찾기 위하여 전극이 접하는 용액과 전극에 가해지는 전압에 따른 Pt 표면에서 Sn의 전기화학적 및 재료적 변화가 조사되었다. 제작된 Sn-modified Pt 전극 표면의 Sn은 hydroxide 형태로 존재하여 물, 특히 산 용액에서 방치하는 것에 의해서도 용해되어 쉽게 전극의 활성이 감소되었으며, 질산염 이온의 환원 시 전극에 Sn(OH)2와 Sn의 산화-환원 평형 전압 보다 음의 전압이 가해질 때 전극 표면의 Sn hydroxide는 Sn으로 환원되어 Pt 전극 내부로 고체 확산되었고, 이는 Sn-modified Pt 전극의 활성을 감소시켰다. Sn의 고체 확산은 전극에 가해주는 전압에 비례하였다. Sn을 Pt에 코팅시키기 위하여 UPD 조건에서 흡착하는 것 보다 많은 Sn을 Pt 표면에 붙일 수 있는 Sn을 Pt에 전해 전착시키는 것이 질산염 이온의 환원하는 동안 전극의 건전성을 유지하는데 유리하였다.
This work investigated the stability of a Sn-modified Pt electrode, which was used for reduction of nitrate, fabricated by an adsorption or electro-deposition of Sn on Pt. In order to find the causes for instability of the electrode, the effects of the solutions in which the electrode was used and the potential applied to the electrode on the electrochemical and metallurgical behaviors of Sn on Pt were studied. The Sn of freshly- prepared modified-Sn Pt electrode existed as Sn hydroxide form, which brought about an easy loss of the electro-activity of the electrode even staying in water, especially in acid solution. When the Sn-modified Pt electrode was used for the reduction of nitrate, the electro-activity of the electrode was affected depending on the potential applied to the electrode. When a more negative potential than the redox equilibrium potential between Sn(OH)2 and Sn was applied to the electrode, the Sn hydroxide was converted to Sn that could diffused into Pt, which leaded to the loss of electro-activity of the electrode as well. The solid diffusion of Sn increased linearly with the applied potential. The Sn-electrodeposited Pt electrode which had more Sn on the electrode was more favorable to maintaining the integrity of the electrode during the reduction of nitrate than the Sn-adsorbed Pt electrode prepared in the under-potential deposition way.
Keywords
References
Lamypitara E, Barbier J, Appl. Catal. A: Gen., 149(1), 49 (1997)
Kerkeni S, Lamy-Pitara E, Barbier J, Catal. Today, 75(1-4), 35 (2002)
Gootzen JF, Peeters PG, Dukers JM, Lefferts L, Visscher W, Vanveen JA, J. Electroanal. Chem., 434(1-2), 171 (1997)
Vooys ACA, van Santen RA, van Veen JAR, J. Molecular Catalysis A; Chemical, 154(1-2), 203 (2002)
Shimazu K, Goto R, Tada K, Chem. Lett., 2, 204 (2002)
Kim KW, Kim SM, Lee EH, Korean Chem. Eng. Res., 45(2), 124 (2007)
Lamypitara E, Elouazzanibenhima L, Barbier J, Cahoreau M, Caisso J, J. Electroanal. Chem., 372(1-2), 233 (1994)
Lamy-Pitara E, Quazzani-Benhima L, Barbier J, Appl. Catal. A: Gen., 81(1), 47 (1992)
Bowlers BJ, Cranshaw TE, Phys. Lett., 17(3), 258 (1965)
Shimazu K, Goto R, Tada K, J. Electroanal. Chem., 529(1), 20 (200)
Iniesta J, Garcia JG, Fernandez J, Montiel V, Aldaz A, J. Mater. Sci., 9(12), 3141 (1999)
Tada K, Shimazu K, J. Electroanal. Chem., 577(2), 303 (2005)
Horanyi G, Rizmayer EM, J. Electroanal. Chem., 140(2), 347 (1982)
Tada K, Shimazu K, J. Electroanal. Chem., 577(2), 303 (2005)
Pourbaix M, National Association of corrosion Engineers, Brussels (1974)
Dean JA, Lang’s handbook of chemistry, McGrawhill, 15th ed. (1999)
Shimazu K, Goto R, Tada K, Chem. Lett. Jpn., 12, 204 (2002)
Mouler JF, Stickle WF, Sobol PE, Bomben KD, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc. (1995)
Sobkowski J, Feabaszczuk K, Pisecki A, J. Electroanal. Chem., 196(1), 145 (1985)
Kerkeni S, Lamy-Pitara E, Barbier J, Catal. Today, 75(1-4), 35 (2002)
Gootzen JF, Peeters PG, Dukers JM, Lefferts L, Visscher W, Vanveen JA, J. Electroanal. Chem., 434(1-2), 171 (1997)
Vooys ACA, van Santen RA, van Veen JAR, J. Molecular Catalysis A; Chemical, 154(1-2), 203 (2002)
Shimazu K, Goto R, Tada K, Chem. Lett., 2, 204 (2002)
Kim KW, Kim SM, Lee EH, Korean Chem. Eng. Res., 45(2), 124 (2007)
Lamypitara E, Elouazzanibenhima L, Barbier J, Cahoreau M, Caisso J, J. Electroanal. Chem., 372(1-2), 233 (1994)
Lamy-Pitara E, Quazzani-Benhima L, Barbier J, Appl. Catal. A: Gen., 81(1), 47 (1992)
Bowlers BJ, Cranshaw TE, Phys. Lett., 17(3), 258 (1965)
Shimazu K, Goto R, Tada K, J. Electroanal. Chem., 529(1), 20 (200)
Iniesta J, Garcia JG, Fernandez J, Montiel V, Aldaz A, J. Mater. Sci., 9(12), 3141 (1999)
Tada K, Shimazu K, J. Electroanal. Chem., 577(2), 303 (2005)
Horanyi G, Rizmayer EM, J. Electroanal. Chem., 140(2), 347 (1982)
Tada K, Shimazu K, J. Electroanal. Chem., 577(2), 303 (2005)
Pourbaix M, National Association of corrosion Engineers, Brussels (1974)
Dean JA, Lang’s handbook of chemistry, McGrawhill, 15th ed. (1999)
Shimazu K, Goto R, Tada K, Chem. Lett. Jpn., 12, 204 (2002)
Mouler JF, Stickle WF, Sobol PE, Bomben KD, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc. (1995)
Sobkowski J, Feabaszczuk K, Pisecki A, J. Electroanal. Chem., 196(1), 145 (1985)