ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 20, 2007
Accepted July 2, 2007
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

BCB 수지로 본딩한 웨이퍼의 본딩 결합력에 관한 연구

A Study on the Bond Strength of BCB-bonded Wafers

인하공업전문대학교 화공환경과, 402-752 인천시 남구 용현동 253 1중앙대학교 기계공학부, 156-756 서울시 동작구 흑석동 221 2포커스 센터-뉴욕 렌슬리어, 미국 뉴욕주 12180 트로이시 렌슬리어 폴리테크닉 인스티튜트
Department of Chemical and Environmental Technology, Inha Technical College, 253, Yonghyun-dong, Nam-gu, Incheon 402-752, Korea 1School of Mechanical Engineering, College of Engineering, Chung-Ang University, 221, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea 2Focus Center - New York, Rensselaer: Interconnections for Hyperintegration, Rensselaer Polytechnic Institute, Troy NY 12180-3590 USA
Korean Chemical Engineering Research, October 2007, 45(5), 479-486(8), NONE Epub 5 November 2007
downloadDownload PDF

Abstract

BCB 수지를 이용하여 본딩한 웨이퍼의 BCB 두께, 본딩 촉진제의 사용여부 및 이웃하는 적층 물질의 종류에 따른 본딩 결합력에 대한 영향을 4-점 굽힘방법을 이용하여 규명한다. 실험결과 본딩 결합력은 BCB 두께에 선형 비례하는데, 이는 BCB의 소성 변형의 정도가 두께에 비례하는 반면에 BCB의 항복 강도에는 영향을 미치지 않기 때문이다. 본딩한 BCB의 두께가 각각 2.6 μm 및 0.4 μm인 경우에 대하여 본딩 촉진제를 사용 했을 때, 본딩 촉진제와 본딩된 물질의 표면에서는 공유 결합이 형성되기 때문에 본딩 결합력이 증가한다. 산화 규소막이 증착된 실리콘 웨이퍼와 BCB 사이 계면에서의 본딩 결합력은 글래스 웨이퍼와 BCB 사이의 계면에서 보다 약 3배 정도 높다. 이러한 본딩 결합력의 차이는 각 계면에서 Si-O 본드의 본딩 밀도 및 본드 파단 에너지의 차이에 기인한다. PECVD 산화 규소막을 증착한 실리콘 웨이퍼와 BCB 사이 계면의 경우, 기 측정된 18 J/m2 및 22 J/m2의 본드 파단 에너지를 얻기 위해 각각 약 12~13 bonds/nm2 및 15~16 bonds/nm2의 Si-O 본드 밀도가 필요하다. 반면에, 글래스 웨이퍼와 BCB 사이 계면의 경우에는 기 측정된 5 J/m2의 본드 파단 에너지를 얻기 위해 약 7~8 bonds/nm2의 Si-O 본드 밀도가 필요하다.
Four point bending is used to study the dependences of bond strength of benzocyclobutene(BCB) bonded wafers and BCB thickness, the use of an adhesion promoter, and the materials being bonded. The bond strength depends linearly on BCB thickness, due to the thickness-dependent contribution of the plastic dissipation energy of the BCB and thickness independence of BCB yield strength. The bond strength increases by about a factor of two with an adhesion promoter for both 2.6 μm and 0.4 μm thick BCB, because of the formation of covalent bonds between adhesion promoter and the surface of the bonded materials. The bond strength at the interface between a silicon wafer with deposited oxide and BCB is about a factor of three higher than that at the interface between a glass wafer and BCB. This difference in bond strength is attributed to the difference in Si-O bond density at the interfaces. At the interfaces between plasma enhanced chemical vapor deposited (PECVD) oxide coated silicon wafers and BCB, and between thermally grown oxide on silicon wafers and BCB, 12~13 and 15~16 bonds/nm2 need to be broken. This corresponds to the observed bond energies, G0s, of 18 and 22 J/m2, respectively. Maximum 7~8 Si-O bonds/nm2 are needed to explain the 5 J/m2 at the interfaces between glass wafers and BCB.

References

International Technology Roadmap for Semiconductors (ITRS): 2003 Edition(Semiaconductor Industry Association, 2003)
Davis JA, Venkatesan R, Kaloyeros A, Beylansky M, Souri SJ, Banerjee K, Saraswat KC, Rahman A, Reif R, Meindl JD, Proc. IEEE, 89(3), 305 (2001)
Gutmann RJ, Lu JQ, Pozder S, Kwon Y, Jindal A, Celik M, McMahon JJ, Yu K, Cale TS, Adv. Metall. Conf., 19 (2003)
Burns J, McIlrath JL, Keast C, Lewis C, Loomis A, Warner K, Wyatt P, 2001 IEEE Int’l Solid-State Circ. Conf., 268 (2001)
Lu JQ, Kwon Y, Kraft RP, Gutmann RJ, McDonald JF, Cale TS, 2001 IEEE Int’l Interconnect Technol. Conf., 219 (2001)
Kuhr M, Bauer S, Rothhaar U, Wolff D, Thin Solid Films, 442(1), 107 (2003)
Kwon Y, Jindal A, McMahon JJ, Lu JQ, Gutmann RJ, Cale TS, Mater. Res. Soc. Symp. Proc., 766, 27 (2003)
Kwon Y, Lu JQ, Kraft RP, Gutmann RJ, McDonald JF, Cale TS, Mater. Res. Soc. Symp. Proc., 710, 231 (2002)
Lingk C, Gross ME, Brown WL, J. Appl. Phys., 87(5), 2232 (2000)
Rye RR, Ricco AJ, J. Electrochem. Soc., 140(6), 1763 (1993)
Hohlfelder RJ, Maidenberg DA, Dauskardt RH, J. Mater. Res., 16(1), 243 (2000)
Im JH, University of Texas, Austin, TX, private communication
Charalambides PG, Lund J, Evans AG, McMeeking RM, J. Appl. Mech., 56(1), 77 (1989)
Kook SY, Dauskardt RH, J. Appl. Phys., 91(3), 1293 (2002)
Volinsky AA, Moody NR, Gerberich WW, Acta Mater., 50(3), 441 (2002)
Kwon Y, Seok J, Lu JQ, Cale TS, Gutmann RJ, J. Electrochem. Soc., 152(4), G286 (2005)
Suo Z, Hutchinson JW, Int. J. Solids Struc., 25(11), 1337 (1989)
Litteken CS, Dauskardt RH, Int. J. Fract., 119/120(1-2), 475 (2003)
Tymiak NI, Volinsky AA, Kriese MD, Downs SA, Gerberich WW, Metallurgical and Materials Transactions A, 31, 863 (2000)
Varias AG, Suo Z, Shih CF, J. Mech. Phys. Solids, 39(7), 963 (1991)
PG&O 1737 Glass Wafer Technical Data Sheets, Precision Glass & Optics, Santa Ana, CA, 2002
Jenkins ML, Dauskardt RH, Bravman JC, J. Adhesion Sci. Technol., 18(13), 1497 (2004)
Garbowski BJ, Corning Incorporates, Corning, NY, private communication
Doremus RH, Glass Science, John Wiley & Sons, New York (1994)
Garde S, Rensselaer Polytechnic Institute, Troy, NY, Private Communication
Israelachvili JN, Intermolecular and Surface Forces, Academic Press, London (1991)
CRC Handbook of Chemistry and Physics, CRC Press LLC, Boca Raton (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로