Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 9, 2007
Accepted May 29, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자 선정
Selection of the Best Oxygen Carrier Particle for Syngas Fueled Chemical-Looping Combustor
한국에너지기술연구원 청정시스템연구센터, 305-343 대전시 유성구 장동 71-2 1경북대학교 환경공학과, 702-701 대구시 북구 산격동 1370 2호서대학교 정보통계학과, 336-795 충남 아산시 배방면 세출리 165
Clean Energy System Research Center, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea 1Department of Environment Engineering, Kyungpook National University, 1370 Sangyeok-dong, Buk-gu, Daegu 702-701, Korea 2Department of Informational Statistics, Hoseo Unoversity, 165 Sechul-ri, Baebang-myun, Asan, Chungnam 336-795, Korea
Korean Chemical Engineering Research, October 2007, 45(5), 506-514(9), NONE Epub 5 November 2007
Download PDF
Abstract
합성가스 연소 매체순환식 가스연소기 적용을 위한 최적 산소공여입자를 선정하기 위해 네 가지 산소공여입자(NiO/bentonite, NiO/LaAl11O18, CoxOy/CoAl2O4, NiO/NiAl2O4)에 대해 환원반응기체로 모사 합성가스(H2, CO2, CO 각각 30, 10, 60%)를 사용하여 열중량 분석기(TGA)에서 환원반응특성 및 탄소침적특성을 측정 및 해석하였다. 환원반응온도가 증가함에 따라 최대전환율, 산소전달능력이 증가하였고 산소전달속도 측면에서 900 ℃가 합성가스 연소반응에 적합한 조건으로 나타났으며 높은 환원반응온도(≥800 ℃)에서는 네 가지 입자 모두에 대해 탄소침적현상이 나타나지 않았다. 네 가지 산소공여입자 중 NiO 계 산소공여입자가 CoO 계 산소공여입자에 비해 반응성이 높게 나타났으며 NiO/bentonite 입자가 산소전달속도, 탄소침적도 면에서 가장 좋은 반응성을 나타내었다. NiO/bentonite 입자에 포함된 금속산화물의 함량이 증가함에 따라 산소전달능력과 산소전달속도가 증가하는 것으로 나타나 금속산화물의 함량이 높은 산소공여입자가 매체순환식 가스연소기의 안정적인 조업에 유리한 것으로 나타났다.
To select the best oxygen carrier particle for syngas fueled chemical-looping combustor, the reduction reactivity and carbon deposition characteristics were determined in a thermogravimetric analyzer. Four kinds of oxygen carrier particles (NiO/bentonite, NiO/LaAl11O18, CoxOy /CoAl2O4, NiO/NiAl2O4) were tested with the simulated syngas (30% H2, 10% CO2, 60% CO) as a reduction gas. With each of these particles, the maximum conversion and oxygen transfer capacity increase with increasing the reduction temperature At the given experimental range, the optimum operating temperature to maximize oxygen transfer rate is found to be 900 ℃ and carbon deposition on the particles could avoid at the temperature above 800 ℃. Among four kinds of oxygen carrier particles, the NiO-based particles exhibits better reactivity than the CoO-based particle. Moreover, the NiO/bentonite particle produces the best reactivity based on the oxygen transfer rate and the degree of carbon deposition. The measured oxygen transfer rate increases as the metal oxide content in NiO/bentonite particle is increased thereby higher metal oxide contents could provide stable operation of chemical-looping combustor.
References
Ryu HJ, KOSEN report, http://www.kosen21.org (2003)
Akai M, Kagajo T, Inoue M, Energy Conv. Manag., 36, 801 (1995)
Kimura N, Omata K, Kiga T, Takano S, Shikisma S, Energy Conv. Manag., 36, 805 (1995)
IEA Greenhouse Gas R&D Programme Report, “Greenhouse Gas Emissions from Power Stations,” (2000), available on http://www.ieagreen.org.uk/sr1p.htm
IEA Greenhouse Gas R&D Programme Report, “Carbon Dioxide Capture from the Power Stations,” (2000), available on http://www.ieagreen.org.uk/sr2p.htm
Wolf J, Anheden M, Yan J, Proceedings of 18th Pittsburg Coal Conference, December 3-7, newcastle, NSW, Australia, session 23, CD-ROM (2001)
ISHIDA M, JIN HG, Energy, 19(4), 415 (1994)
Hatanaka T, Matsuda S, Hatano H, Proceedings of the Thirty Second IECEC, 1, 944 (1997)
Ryu HJ, Lim NY, Bae DH, Jin GT, Korean J. Chem. Eng., 20(1), 157 (2003)
Ishida M, Jin H, Okamoto T, Energy Fuels, 12(2), 223 (1998)
Ryu HJ, Jin GT, Jo SH, Bae DH, Theories and Applications Chem. Eng., 12(2), 259 (2006)
Ryu HJ, Seo Y, Jin GT, 10th Asian Conference on Fluidized Bed and Three-Phase Reactors, Busan, Korea, November 26-29, 174-179 (2006)
Ryu HJ, Bae DH, Jo SH, Jin GT, Korean Chem. Eng. Res., 42(1), 107 (2004)
Ryu HJ, Jin GT, Korean Chem. Eng. Res., 42(5), 588 (2004)
Ryu HJ, Jin GT, Lee SY, Park J, Trans. Korean Hydrogen Energy Society, 15(3), 208 (2004)
Ryu HJ, Lim NY, Jin GT, Bae SY, Theor. Appl. Chem. Eng., 8(2), 4609 (2002)
Han GB, Park NK, Ryu SO, Lee TJ, Korean Chem. Eng. Res., 44(4), 356 (2006)
Ishda M, Jin H, J. Energy Resour. Technol., 23, 10 (2001)
Nakano Y, Iwamoto S, Maeda T, Ishida M, Akehata T, Iron & Steel J. Japan, 72, 1521 (1986)
Jin H, Okamoto T, Ishida M, Energy Fuels, 12(6), 1272 (1998)
Jin HG, Okamoto T, Ishida M, Ind. Eng. Chem. Res., 38(1), 126 (1999)
Ihida M, Yamamoto M, Saito Y, ECOS'99, International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy System, Tokyo, June 8-10, 306-310 (1999)
Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM, Energy Fuels, 18(2), 371 (2004)
Jin H, Ishida M, Int. J. Hydrog. Energy, 26, 889 (2001)
Lyngfelt A, Leckner B, Mattisson T, Chem. Eng. Sci., 56(10), 3101 (2001)
Akai M, Kagajo T, Inoue M, Energy Conv. Manag., 36, 801 (1995)
Kimura N, Omata K, Kiga T, Takano S, Shikisma S, Energy Conv. Manag., 36, 805 (1995)
IEA Greenhouse Gas R&D Programme Report, “Greenhouse Gas Emissions from Power Stations,” (2000), available on http://www.ieagreen.org.uk/sr1p.htm
IEA Greenhouse Gas R&D Programme Report, “Carbon Dioxide Capture from the Power Stations,” (2000), available on http://www.ieagreen.org.uk/sr2p.htm
Wolf J, Anheden M, Yan J, Proceedings of 18th Pittsburg Coal Conference, December 3-7, newcastle, NSW, Australia, session 23, CD-ROM (2001)
ISHIDA M, JIN HG, Energy, 19(4), 415 (1994)
Hatanaka T, Matsuda S, Hatano H, Proceedings of the Thirty Second IECEC, 1, 944 (1997)
Ryu HJ, Lim NY, Bae DH, Jin GT, Korean J. Chem. Eng., 20(1), 157 (2003)
Ishida M, Jin H, Okamoto T, Energy Fuels, 12(2), 223 (1998)
Ryu HJ, Jin GT, Jo SH, Bae DH, Theories and Applications Chem. Eng., 12(2), 259 (2006)
Ryu HJ, Seo Y, Jin GT, 10th Asian Conference on Fluidized Bed and Three-Phase Reactors, Busan, Korea, November 26-29, 174-179 (2006)
Ryu HJ, Bae DH, Jo SH, Jin GT, Korean Chem. Eng. Res., 42(1), 107 (2004)
Ryu HJ, Jin GT, Korean Chem. Eng. Res., 42(5), 588 (2004)
Ryu HJ, Jin GT, Lee SY, Park J, Trans. Korean Hydrogen Energy Society, 15(3), 208 (2004)
Ryu HJ, Lim NY, Jin GT, Bae SY, Theor. Appl. Chem. Eng., 8(2), 4609 (2002)
Han GB, Park NK, Ryu SO, Lee TJ, Korean Chem. Eng. Res., 44(4), 356 (2006)
Ishda M, Jin H, J. Energy Resour. Technol., 23, 10 (2001)
Nakano Y, Iwamoto S, Maeda T, Ishida M, Akehata T, Iron & Steel J. Japan, 72, 1521 (1986)
Jin H, Okamoto T, Ishida M, Energy Fuels, 12(6), 1272 (1998)
Jin HG, Okamoto T, Ishida M, Ind. Eng. Chem. Res., 38(1), 126 (1999)
Ihida M, Yamamoto M, Saito Y, ECOS'99, International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Aspects of Energy System, Tokyo, June 8-10, 306-310 (1999)
Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM, Energy Fuels, 18(2), 371 (2004)
Jin H, Ishida M, Int. J. Hydrog. Energy, 26, 889 (2001)
Lyngfelt A, Leckner B, Mattisson T, Chem. Eng. Sci., 56(10), 3101 (2001)