Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 22, 2007
Accepted August 29, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고분자 전해질 연료전지용 플라즈마 개질 시스템에서 수소 생산 및 CO 산화반응에 관한 연구
Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC
조선대학교 기계공학과, 501-759 광주시 동구 서석동 375 1조선대학교 환경공학부·BK21 바이오가스기반 수소생산 사업팀, 501-759 광주시 동구 서석동 375
Department of Mechanical Engineering, Chosun University, 375 Seoksuk-dong, Dong-gu, Gwangju 501-759, Korea 1BK21 Team for Hydrogen Production, Department of Environmental Engineering, Chosun University, 375 Seoksuk-dong, Dong-gu, Gwangju 501-759, Korea
Korean Chemical Engineering Research, December 2007, 45(6), 656-662(7), NONE Epub 26 December 2007
Download PDF
Abstract
고분자 전해질 연료전지 운전에 필요한 수소 공급 장치로서 플라즈마 개질 방법을 이용한 개질기와 일산화탄소 산화반응을 위한 전이 반응기를 설계 및 제작하였다. GlidArc 방전을 이용한 저온플라즈마 개질기는 Ni 촉매를 동시에 사용하여 CH4 개질함으로서 H2 선택도를 증대하였다. 개질기의 변수별 연구로서 촉매 온도, 가스 조성비, 전체 가스유량, 전압변화 그리고 개질 특성 및 최적 수소 생산조건을 연구하였으며, 전이반응기의 변수별 연구로서 선택적 산화반응기(PrOx)에 주입되는 공기량, 전이 반응기에 주입되는 수증기량 그리고 온도에 대하여 연구하였다. 플라즈마 개질기에서 최대 수소 생산 조건은 O2/C 비가 0.64, 가스유량은 14.2 l/min, 촉매 반응기 온도 672 ℃ 그리고 유입전력이 1.1 kJ/L일 때 41.1%로 최대 수소 농도를 나타냈다. 그리고 이때의 CH4 전환율, H2 수율 그리고 개질기 에너지 밀도는 각각 88.7%, 54%, 35.2%를 나타냈다. 전이 반응기에서 모사된 개질 가스로부터 최대 CO 전환율을 보이는 조건은 2단으로 구성된 PrOx에 주입되는 O2/C 비가 0.3, HTS에서 주입되는 수증기 주입량 비가 2.8 그리고 HTS, LTS, PrOxI, PrOx II 반응기 온도가 475, 314, 260, 235 ℃ 일때 가장 높은 CO 전환율을 나타냈다. 플라즈마를 이용한 반응기는 예열 시간은 30분이 소요되었으며, 전이 반응기에서 나오는 최종 개질 가스의 조성은 H2 38%, CO<10 ppm, N2 36%, CO2 21% 그리고 CH4 4%로 나타냈다.
Fuel reformer using plasma and shift reactor for CO oxidation were designed and manufactured as H2 supply device to operate a polymer electrolyte membrane fuel cell (PEMFC). H2 selectivity was increased by non-thermal plasma reformer using GlidArc discharge with Ni catalyst simultaneously. Shift reactor was consisted of steam generator, low temperature shifter, high temperature shifter and preferential oxidation reactor. Parametric screening studies of fuel reformer were conducted, in which there were the variations of the catalyst temperature, gas component ratio, total gas ratio and input power. and parametric screening studies of shift reactor were conducted, in which there were the variations of the air flow rate, stema flow rate and temperature. When the O2/C ratio was 0.64, total gas flow rate was 14.2 l/min, catalytic reactor temperature was 672 ℃ and input power 1.1 kJ/L, the production of H2 was maximized 41.1%. And CH4 conversion rate, H2 yield and reformer energy density were 88.7%, 54% and 35.2% respectively. When the O2/C ratio was 0.3 in the PrOx reactor, steam flow ratio was 2.8 in the HTS, and temperature were 475, 314, 260, 235 ℃ in the HTS, LTS, PrOx, the conversion of CO was optimized conditions of shift reactor using simulated reformate gas. Preheat time of the reactor using plasma was 30 min, component of reformed gas from shift reactor were H2 38%, CO<10 ppm, N2 36%, CO2 21% and CH4 4%.
References
Rusu I, Cormier JM, Chem. Eng. J., 91(1), 23 (2003)
Yang JI, Kim JN, HWAHAK KONGHAK, 41(4), 439 (2003)
Futamura S, Kabashima H, Annadurai G, Catal. Today, 115(1-4), 211 (2006)
Nishimoto H, Nakagawa K, Ikenaga N, Nishitani-Gamo M, Ando T, Suzuki T, Appl. Catal. A: Gen., 264(1), 65 (2004)
Lee DH, Lim KT, Cha MS, Song, YH, Pro. Com. Inst., 31(2), 3343 (2007)
Rostrup-Nielsen DJR, J. Catal., 33(2), 184 (1974)
Pasquale C, Fortunato M, Int. J. Hydrog. Energy, 32(1), 55 (2007)
Liu ZG, Zhou RX, Zheng XM, J. Mol. Catal. A-Chem., 267(1-2), 137 (2007)
Kim DK, Shin CS, Shin CH, Korean Chem. Eng. Res., 42(3), 371 (2004)
Yang JI, Kim JN, HWAHAK KONGHAK, 41(4), 439 (2003)
Futamura S, Kabashima H, Annadurai G, Catal. Today, 115(1-4), 211 (2006)
Nishimoto H, Nakagawa K, Ikenaga N, Nishitani-Gamo M, Ando T, Suzuki T, Appl. Catal. A: Gen., 264(1), 65 (2004)
Lee DH, Lim KT, Cha MS, Song, YH, Pro. Com. Inst., 31(2), 3343 (2007)
Rostrup-Nielsen DJR, J. Catal., 33(2), 184 (1974)
Pasquale C, Fortunato M, Int. J. Hydrog. Energy, 32(1), 55 (2007)
Liu ZG, Zhou RX, Zheng XM, J. Mol. Catal. A-Chem., 267(1-2), 137 (2007)
Kim DK, Shin CS, Shin CH, Korean Chem. Eng. Res., 42(3), 371 (2004)