Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 27, 2007
Accepted October 18, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
폴리프로필렌/전분/실리케이트 복합체의 실리케이트 분산 및 유변학적특성에 미치는 전분 함량의 영향
Effect of the Starch Content on the Silicate Dispersion and Rheological Properties of Polypropylene/Starch/Silicate Composites
공주대학교 고분자공학전공, 330-717 충남 천안시 부대동 272 1공주대학교 환경공학과, 330-717 충남 천안시 부대동 272
Major in Polymer Engineering, Kongju National University, 275 Budae-dong, Cheonan, Chungnam 330-717, Korea 1Department of Environmental Engineering, Kongju National University, 275 Budae-dong, Cheonan, Chungnam 330-717, Korea
Korean Chemical Engineering Research, February 2008, 46(1), 106-111(6), NONE Epub 28 February 2008
Download PDF
Abstract
폴리프로필렌(polypropylene, PP)/옥수수전분(corn starch) 마스터뱃취(MB)/실리케이트 복합체를 전분 함량을 10, 20, 30, 40, 50으로 변화시키면서 실험실 규모의 brabender mixer를 이용하여 200 ℃에서 제조하였다. 실리케이트의 함량은 5 wt%로 고정하였다. 복합체에서 전분 MB 함량 변화는 적외선분광기(FT-IR)를 이용하여 수산기의 존재여부 와 피크 강도 변화로 확인하였다. PP/전분 MB/실리케이트 복합체의 열적특성을 시차주사열용량분석기(DSC) 그리고 열중량분석기(TGA)를 이용하여 관찰하였다. PP/전분 MB/실리케이트의 용융온도에는 큰 변화가 나타나지 않음을 알 수 있었고, 분해온도는 전분 MB 함량에 따라 점차적으로 감소하는 경향을 보여주었다. 복합체의 실리케이트 분산정도는 X-선 회절(XRD)과 투과전자현미경(TEM)을 이용하여 측정하였다. 복합체의 실리케이트 분산은 전분 MB의 함량에 의존하였고, 전분 MB가 20 wt% 이상 첨가되었을 때 d-spacing과 피이크 강도에 큰 변화를 보였다. 복합체의 유변학적 특성은 전분 MB의 함량에 따라 shear thinning effect와 탄성특성에 있어 증가를 나타내었다. 또한 전분 함량이 20 wt% 이상 첨가되었을 때 이들 유변학적 특성에 있어서 큰 변화를 나타내었다. 이는 200 ℃에서 동적유변학측정기를 이용하여 확인하였다.
Polypropylene (PP)/corn starch master batch (starch-MB)/silicate composites with different corn starch compositions of 10, 20, 30, 40 and 50 were prepared by melt compounding at 200 ℃, using lab scale Brabender mixer. The content of silicate was fixed at 5 wt%. The composition of starch-MB in composites was confirmed by the existence of hydroxy group and peak intensity in fourier-transform-infrared (FT-IR) spectrum. The thermal properties of the PP/starch-MB/silicate composites were investigated by differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). There was no district change in melting temperature, and TGA curve indicates a decrease in degradation temperature with the increase of starch-MB content. The silicate dispersion of the composites was measured by X-ray diffraction (XRD) and transmission electron microscope (TEM). The degree of silicate dispersion in PP/starch-MB/silicate composites depended on the content of starch-MB. There was detectable change in d-spacing and peak intensity of the composite when the content of starch-MB was higher than 20 wt%. The_x000D_
rheological behavior of the composites was explained by both shear thinning effect and elastic property with the starch-MB amount. These effects were remarkable when the content of starch-MB was higher than 20 wt%. These were confirmed by an oscillatory viscometer at 200 ℃.
References
Heinemann J, Reichert P, Thomann R, Mulhaupt R, Macromol. Rapid Commun., 20(8), 423 (1999)
Zheng L, Farris RJ, Coughlin EB, Macromolecules, 34(23), 8034 (2001)
Nam PH, Maiti P, Okamoto M, Kotaka T, Hasegawa N, Usuki A, Polymer, 42(23), 9633 (2001)
Liu XH, Wu QJ, Polymer, 42(25), 10013 (2001)
Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ, Polymer, 42(24), 9819 (2001)
Li J, Zhou C, Gang W, Polym. Test, 22, 217 (2003)
Kim YC, Polym. J., 38(3), 250 (2006)
Chung MS, Lee WH, You YS, Kim HY, Park KM, Lee SY, Food Sci. Biotech., 15(1), 5 (2006)
Barikani M, Mohammadi M, Carbohydr. Polym., 68, 773 (2007)
Lim DL, Im SS, J. Korean Ind. Eng. Chem., 3(3), 361 (1992)
Lee SH, Kim D, Kim JH, Lee DH, Sim SJ, Nam JD, Kye H, Lee Y, Polym.(Korea), 28(6), 519 (2004)
Jang WY, Shin BY, Lee TJ, Narayan R, J. Ind. Eng. Chem., 13(3), 457 (2007)
Baker WE, Rudin A, Schreiber HP, El-Kindi M, Polym. Eng. Sci., 33(7), 377 (1993)
Molenaar J, Koopmans RJ, J. Rheol., 38(1), 99 (1994)
Wang SQ, Drda PA, Macromolecules, 29(7), 2627 (1996)
Lele A, Mackley M, Galgali G, Ramesh C, J. Rheol., 46(5), 1091 (2002)
Kim YC, Lee SJ, Kim JC, Cho H, Polym. J., 37(3), 206 (2005)
Zheng L, Farris RJ, Coughlin EB, Macromolecules, 34(23), 8034 (2001)
Nam PH, Maiti P, Okamoto M, Kotaka T, Hasegawa N, Usuki A, Polymer, 42(23), 9633 (2001)
Liu XH, Wu QJ, Polymer, 42(25), 10013 (2001)
Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ, Polymer, 42(24), 9819 (2001)
Li J, Zhou C, Gang W, Polym. Test, 22, 217 (2003)
Kim YC, Polym. J., 38(3), 250 (2006)
Chung MS, Lee WH, You YS, Kim HY, Park KM, Lee SY, Food Sci. Biotech., 15(1), 5 (2006)
Barikani M, Mohammadi M, Carbohydr. Polym., 68, 773 (2007)
Lim DL, Im SS, J. Korean Ind. Eng. Chem., 3(3), 361 (1992)
Lee SH, Kim D, Kim JH, Lee DH, Sim SJ, Nam JD, Kye H, Lee Y, Polym.(Korea), 28(6), 519 (2004)
Jang WY, Shin BY, Lee TJ, Narayan R, J. Ind. Eng. Chem., 13(3), 457 (2007)
Baker WE, Rudin A, Schreiber HP, El-Kindi M, Polym. Eng. Sci., 33(7), 377 (1993)
Molenaar J, Koopmans RJ, J. Rheol., 38(1), 99 (1994)
Wang SQ, Drda PA, Macromolecules, 29(7), 2627 (1996)
Lele A, Mackley M, Galgali G, Ramesh C, J. Rheol., 46(5), 1091 (2002)
Kim YC, Lee SJ, Kim JC, Cho H, Polym. J., 37(3), 206 (2005)