ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 28, 2007
Accepted October 15, 2007
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

백금 나노입자전극의 전기화학적 거동에 대한 카본나노튜브 지지체의 산소-불소 처리효과

An Oxyfluorination Effect of Carbon Nanotubes Supports on Electrochemical Behaviors of Platinum Nanoparticle Electrodes

한국화학연구원 화학소재연구단, 305-600 대전시 유성구 장동 100 1인하대학교 화학과, 402-751 인천시 남구 용현동 253
Advanced Materials Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea 1Department of Chemistry, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751, Korea
Korean Chemical Engineering Research, February 2008, 46(1), 118-123(6), NONE Epub 28 February 2008
downloadDownload PDF

Abstract

본 연구에서는 multi-walled nanotubes(MWNTs)를 산소-불소 혼합가스로 처리하여, 표면 관능기를 분석하고, 그 처리효과를 조사하였다. 산소-불소 처리된 MWNTs의 표면특성은 FT-IR 그리고 XPS로 분석하였다. 처리된 탄소지지체에 백금 나노입자를 담지시킨 후, 입자 결정성크기와 담지함량을 조사하였다. 위 탄소지지체에 담지된 촉매의 전기화학적 특성은 전류-전압 곡선을 측정하여 분석하였다. 표면분석의 결과로부터, 산소 및 불소를 포함한 화학관능기가 탄소지지체에 도입된 사실을 알 수 있었다. 산소-불소 함량은 처리온도가 100 ℃ 일때 최고값을 나타냈다. Pt/100-MWNTs 샘플의 경우, 3.5 nm의 최소의 결정성 크기를 보였고, 9.4%의 가장 높은 담지율을 나타냈다. 그러나, 이보다 높은 온도에서 처리된 샘플의 경우, 결정성 크기가 증가하였고, 담지율은 감소하였다. 이러한 결과를 통해, 결정성 크기와 담지율을 산소-불소 처리온도를 변화시켜 제어할 수 있었음을 제시하였다. 이와 연관되어, 촉매의 전기화학적 활성이 100 ℃ 처리까지는 증가하다가, 200 ℃와 300 ℃의 경우에는 감소하였다. Pt/100-MWNTs 샘플은 비교샘플 중에서 최고의 비전류밀도(specific current density)인 120 mA/mg 수치를 나타냈다.
In the present study, the effect of oxyfluorination treatment on multi-walled nanotubes (MWNTs) supports was investigated by analyzing surface functional groups. The surface characteristics were determined by Fourier transformed-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). After the deposition of platinum nanoparticles on the above treated carbon supports, a crystalline size and a loading level had been investigated. Electrochemical properties of the treated MWNTs-supported Pt (Pt/ MWNTs) catalysts were analyzed by current-voltage curve measurements. From the results of surface analysis, an oxygen and fluorine-containing functional group had been introduced to the surface of carbon supports. The oxygen and fluorine contents were the highest value at the treatment of 100 temperature. The Pt/100-MWNTs showed the smallest particle crystalline size of 3.5 nm and the highest loading level of 9.4% at the treatment of 100 temperature. However, the sample treated at the higher temperature showed the larger crystalline size and the lower loading level. This indicated that the crystalline size and the loading level could be controlled by changing the temperature of oxyfluorination treatment. Accordingly, an electrochemical activity was enhanced by increasing the temperature of treatment upto 100, and then decreased in the case of 200 and 300. The highest specific current density of 120 mA/mg had been obtained in the case of Pt/100-MWNTs.

References

Arico AS, Srinivasan S, Antonucci V, Fuel Cells, 1(2), 133 (2001)
Chen CY, Yang P, Lee YS, Lin KF, J. Power Sources, 141(1), 24 (2005)
Joo SH, Choi SJ, Oh H, Kwak J, Liu Z, Terasaki O, Ryoo R, Nature, 412(6843), 169 (2001)
Gotz M, Wendt H, Electrochim. Acta, 43(24), 3637 (1998)
Zhou Z, Wang S, Zhou W, Wang G, Jiang L, Li W, Song S, Liu J, Sun G, Xin Q, Chem. Commun., 2003(3), 394 (2003)
Kwak C, Park TJ, Suh DJ, Chem. Eng. Sci., 60(5), 1211 (2005)
Park KW, Sung YE, J. Ind. Eng. Chem., 12(2), 165 (2006)
Kim DH, Sauk JH, Kim HY, Lee KS, Sung JY, Korean Chem. Eng. Res., 44(2), 187 (2006)
Kim S, Park SJ, J. Power Sources, 159(1), 42 (2006)
Kim S, Park SJ, J. Solid State Electrochemistry, 11(6), 821 (2007)
Park SJ, Jeong HJ, Nah C, Polym.(Korea), 27(1), 46 (2003)
Kim S, Park SJ, Electrochim. Acta, 52(9), 3013 (2007)
Park IS, Park KW, Choi JH, Park CR, Sung YE, Carbon, 45(1), 28 (2007)
Yang W, Yang S, Guo J, Sun G, Xin Q, Carbon, 45(2), 397 (2007)
Frackowiak E, Lota G, Cacciaguerra T, Beguin F, Electrochem. Commun., 8(1), 129 (2006)
Wang HJ, Yu H, Peng F, Lv P, Electrochem. Commun., 8(3), 499 (2006)
Toit FJ, Sanderson RD, J. Fluor. Chem., 98(2), 107 (1999)
Chtourou H, Riedl B, Kokta BV, J. Colloid Interface Sci., 158(1), 96 (1993)
Nakajima T, Gupta V, Ohzawa Y, Koh M, Singh RN, Tressaud A, Durand E, J. Power Sources, 104(1), 108 (2002)
Hruska Z, Lepot X, J. Fluor. Chem., 105(1), 87 (2003)
Gupta V, Nakajima T, Ohzawa Y, Iwata H, J. Fluor. Chem., 112(2), 233 (2001)
Kiplinger CL, Persico DF, Lagow RJ, Paul DR, J. Appl. Polym. Sci., 31(8), 2617 (1986)
Nakajima T, J. Fluor. Chem., 105(2), 229 (2000)
Li W, Liang C, Qiu J, Zhou W, Han H, Wei Z, Sun G, Xin Q, Carbon, 40(5), 791 (2002)
Kinoshita K, John Wiley, New York, 31-40 (1988)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로