Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 22, 2007
Accepted September 4, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
상반전 기법으로 제조한 PVdF-HFP/(SiO2, TiO2) 고분자 전해질을 채용한 리튬금속 고분자 2차전지의 충방전 특성
Charge-Discharge Characteristics of Lithium Metal Polymer Battery Adopting PVdF-HFP/(SiO2, TiO2) Polymer Electrolytes Prepared by Phase Inversion Technique
강원대학교 BT 특성화학부 대학 생물소재공학 전공, 200-701 강원도 춘천시 효자2동 192-1 1한국전자통신연구원 IT 부품융합연구소 IT-NT 그룹 이오닉스소자팀, 305-700 대전시 유성구 가정동 161
School of Biotechnology and Bioengineering, and Institute of Bioscience and Biotechnology, Kangwon National University, 192-1 Hyoja 2-dong, Chunchon, Kangwon 200-701, Korea 1Ionics Devices Team, IT-NT Group, IT Convergence & Components Lab., Electronics & Telecommunications Research Institute (ETRI), 161 Gajung-dong, Yuseong-gu, Daejon 305-700, Korea
kwang@etri.re.kr
Korean Chemical Engineering Research, February 2008, 46(1), 131-136(6), NONE Epub 28 February 2008
Download PDF
Abstract
용매 N-methyl-2-pyrrolidone(NMP)과 dimethyl acetamide(DMAc)를 각각 사용하고 물을 비용매로 사용하는 상반전 기법에 의해, 실리카(SiO2)와 티타니아(TiO2) 나노입자가 각각 충진된 poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) 고분자 전해질을 제조하고, 이를 고용량 양극재료인 Li[Ni0.15Co0.10Li0.20Mn0.55]O2를 주성분으로 하는 양전극과 리튬금속 음전극 사이에 채용하는 리튬금속 고분자 2차전지를 제작하여 그 충방전 특성을 조사하였다. 고분자 전해질 제조에 사용한 용매에 상관없이 실리카 충진재의 함량이 40~50 wt%인 상반전막을 고분자 전해질로 적용하였을 때 가장 높은 방전용량(180 mAh/g)을 나타내었으며, 이 경우 대개 80 사이클까지 초기용량의 99% 정도의 지속성을 보이다가 그 이후 급격한 용량 감소를 보였다. 이 용량 감소는 상반전막이 보장하는 용량 유지능력이 더이상 발휘될 수 없는 상태로 고분자 전해질에 리튬 dendrite가 침적되었기 때문이라 생각된다.
Silica- or titania-filled poly (vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes were prepared by phase inversion technique using N-methyl-2-pyrrolidone and dimethyl acetamide as solvent and water as non-solvent. The polymer electrolytes were adopted to the lithium metal polymer battery using high-capacity cathode Li[Ni0.15Co0.10Li0.20Mn0.55]O2 and lithium metal anode. After the repeated charge-discharge test for the cell, it was proved that the cell adopting the polymer electrolyte based on the phase-inversion membrane containing 40~50 wt% silica showed the highest discharge capacity (180 mAh/g) until 80th cycle and then abrupt capacity fade was just followed. The capacity fade might be due to the deposition of lithium dendrite on the polymer electrolyte, in which the capacity retention was no longer sustainable.
Keywords
References
Kim KM, Ryu KS, Kang SG, Chang SH, Chung IJ, Macromol. Chem. Phys., 202(6), 866 (2001)
Kim KM, Park NG, Ryu KS, Chang SH, Polymer, 43(14), 3951 (2002)
Kim KM, Ko JM, Park NG, Ryu KS, Chang SH, Solid State Ion., 161(1-2), 121 (2003)
Saito Y, Kataoka H, Stephan AM, Macromolecules, 34(20), 6955 (2001)
Saito Y, Kataoka H, Sakai T, Deki S, Electrochim. Acta, 46(10-11), 1747 (2001)
Saito Y, Kataoka H, Quartarone E, Mustarelli P, J. Phys. Chem. B, 106(29), 7200 (2002)
Huang HT, Wunder SL, J. Electrochem. Soc., 148(3), a279 (2001)
Kim KM, Park NG, Ryu KS, Chang SH, Electrochim. Acta, 51(26), 5636 (2006)
Kim KM, Park NG, Ryu KS, Chang SH, J. Appl. Polym. Sci., 102(1), 140 (2006)
Kim KM, Kim JC, Ryu KS, Macromol. Mater. Eng., 291(12), 1495 (2006)
Kim KM, Kim JC, Ryu KS, Macromol. Chem. Phys., 208(8), 887 (2007)
Hong YS, Park YJ, Ryu KS, Chang SH, Shin YJ, J. Power Sources, 147(1-2), 214 (2005)
Caillon-Caravanier M, Claude-Montigny B, Lemordant D, Bosser G, J. Power Sources, 107(1), 125 (2002)
Kumar B, Scanlon LG, Spry RJ, J. Power Sources, 96(2), 337 (2001)
Best AS, Ferry A, MacFarlane DR, Forsyth M, Solid State Ion., 126(3-4), 269 (1999)
Watanabe M, Endo T, Nishimoto A, Miura K, Yanagida M, J. Power Sources, 81-82, 786 (1999)
Kim KM, Park NG, Ryu KS, Chang SH, Polymer, 43(14), 3951 (2002)
Kim KM, Ko JM, Park NG, Ryu KS, Chang SH, Solid State Ion., 161(1-2), 121 (2003)
Saito Y, Kataoka H, Stephan AM, Macromolecules, 34(20), 6955 (2001)
Saito Y, Kataoka H, Sakai T, Deki S, Electrochim. Acta, 46(10-11), 1747 (2001)
Saito Y, Kataoka H, Quartarone E, Mustarelli P, J. Phys. Chem. B, 106(29), 7200 (2002)
Huang HT, Wunder SL, J. Electrochem. Soc., 148(3), a279 (2001)
Kim KM, Park NG, Ryu KS, Chang SH, Electrochim. Acta, 51(26), 5636 (2006)
Kim KM, Park NG, Ryu KS, Chang SH, J. Appl. Polym. Sci., 102(1), 140 (2006)
Kim KM, Kim JC, Ryu KS, Macromol. Mater. Eng., 291(12), 1495 (2006)
Kim KM, Kim JC, Ryu KS, Macromol. Chem. Phys., 208(8), 887 (2007)
Hong YS, Park YJ, Ryu KS, Chang SH, Shin YJ, J. Power Sources, 147(1-2), 214 (2005)
Caillon-Caravanier M, Claude-Montigny B, Lemordant D, Bosser G, J. Power Sources, 107(1), 125 (2002)
Kumar B, Scanlon LG, Spry RJ, J. Power Sources, 96(2), 337 (2001)
Best AS, Ferry A, MacFarlane DR, Forsyth M, Solid State Ion., 126(3-4), 269 (1999)
Watanabe M, Endo T, Nishimoto A, Miura K, Yanagida M, J. Power Sources, 81-82, 786 (1999)