Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 21, 2007
Accepted October 22, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
메조포러스 ZnS가 충전된 P(VDF-HPF) 고분자 전해질
P(VDF-HPF)-Based Polymer Electrolyte Filled with Mesoporous ZnS
LG화학 기술연구원, 305-380 대전시 유성구 문지동 104-1 1한국과학기술원 생명화학공학과, 305-701 대전시 유성구 구성동 373-1
LG Chem. Ltd., 104-1 Moonji-dong, Yuseong-gu, Daejeon 305-380, Korea 1Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea
h_lee@kaist.ac.kr
Korean Chemical Engineering Research, February 2008, 46(1), 170-174(5), NONE Epub 28 February 2008
Download PDF
Abstract
리튬염을 포함하는 P(VDF-HFP)계 겔 고분자에 surfactant-assisted templating process로 합성한 메조포러스 ZnS를 충전하여 다양한 ZnS 무게비를 가지는 전해질 필름을 제조하였고 겔 필름의 이온 전도도를 온도에 따라 측정하였다. 그 결과, 대체적으로 ZnS의 함량비가 증가할수록 증가하였다. 특히 20 wt%와 25 wt% ZnS를 포함하는 겔 필름은 상온에서 10-4 Scm-1의 높은 이온 전도도를 보였다. 하지만 20 wt% 이상의 함량비에서는 더 이상 이온 전도도가 증가하지 않았다. 합성된 메조포러스 ZnS와 겔 전해질 필름의 특성은 XRD(x-ray diffractometer), DSC(differential scanning calorimetry), TGA(thermogravimetric analysis), FT-IR(fourier transform-infrared spectrometer), SEM(scanning electron microscopy), TEM(transmission electron microscopy)을 이용하여 분석하였다. 이온 전도도는 교류 임피던스법에 따라서 승온하면서 측정하였다.
ZnS-polymer gel films were prepared with incorporating mesoporous ZnS synthesized by surfactantassisted templating process and poly (vinylidene fluoride)-hexafluoropropylene copolymer (P(VDF-HFP)) in order to observe the variation of ionic conductivities according to the various weight ratios between ZnS and P(VDF-HFP). Ionic conductivities for each gel electrolyte were measured with increasing temperature. As a result, ionic conductivities increased with increasing the amount of ZnS and temperature. In particular, the films with 20 and 25 wt% ZnS were found that they possessed the high ionic conductivity of approximately 10-4 Scm-1 at room temperature. However, above 20 wt% of ZnS, the enhancement of ionic conductivity was not observed. For the characterization of ZnS and the gel electrolyte, XRD (x-ray diffractometer), DSC (differential scanning calorimetry), TGA (thermogravimetric analysis), FT-IR (fourier transform-infrared spectrometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) were employed. Ionic conductivities were measured by a.c. impedance method.
Keywords
References
MacCallum JR, Vincent CA, Et AL, Elsevier Applied Science, 2, London (1989)
Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
Saito Y, Kataoka H, Capiglia C, Yamamoto H, J. Phys. Chem. B, 104(9), 2189 (2000)
Kweon JO, You JS, Noh ST, Korean Chem. Eng. Res., 42(6), 741 (2004)
Antonelli DM, Ying JY, Curr. Opin. Colloid Interface Sci., 1, 523 (1996)
Behrens P, Angew. Chem. Int. Ed. Engl., 35(5), 515 (1996)
Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander BE, J. Power Sources, 119, 409 (2003)
Dissanayake MAKL, Jayathilaka PARD, Bokalawela RSP, Electrochim. Acta, 50(28), 5602 (2005)
Li ZH, Su GY, Wang XY, Gao DS, Solid State Ion., 176(23-24), 1903 (2005)
Li J, Zhao X, Yan C, Mater. Lett., 60, 2896 (2006)
Rana RK, Zhang LZ, Yu JC, Mastai Y, Gedanken A, Langmuir, 19(14), 5904 (2003)
Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
Saito Y, Kataoka H, Capiglia C, Yamamoto H, J. Phys. Chem. B, 104(9), 2189 (2000)
Kweon JO, You JS, Noh ST, Korean Chem. Eng. Res., 42(6), 741 (2004)
Antonelli DM, Ying JY, Curr. Opin. Colloid Interface Sci., 1, 523 (1996)
Behrens P, Angew. Chem. Int. Ed. Engl., 35(5), 515 (1996)
Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander BE, J. Power Sources, 119, 409 (2003)
Dissanayake MAKL, Jayathilaka PARD, Bokalawela RSP, Electrochim. Acta, 50(28), 5602 (2005)
Li ZH, Su GY, Wang XY, Gao DS, Solid State Ion., 176(23-24), 1903 (2005)
Li J, Zhao X, Yan C, Mater. Lett., 60, 2896 (2006)
Rana RK, Zhang LZ, Yu JC, Mastai Y, Gedanken A, Langmuir, 19(14), 5904 (2003)