Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 29, 2007
Accepted October 25, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Li-X 제올라이트에서의 CO2/CO/CH4/H2 단일성분 및 혼합성분의 흡착평형
Pure and Binary Gases Adsorption Equilibria of CO2/CO/CH4/H2 on Li-X Zeolite
한국과학기술연구원 에너지 환경 연구부, 136-791 서울시 성북구 하월곡동 39-1 1연세대학교 화학공학과, 120-749 서울시 서대문구 신촌동 134
Environment & Process Technology Division, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Sungbuk-gu, Seoul 136-791, Korea 1Department of Chemical Enginnering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
dkchoi@kist.re.kr
Korean Chemical Engineering Research, February 2008, 46(1), 175-183(9), NONE Epub 28 February 2008
Download PDF
Abstract
흡착제 Li-X 제올라이트(UOP)에서 CO2, CO, CH4, H2에 대한 단일성분 및 혼합성분의 흡착평형 실험을 정적부피법에 의해 수행하였다. 실험 데이터는 압력범위 0~20 bar와 온도범위 293.15 K, 303.15 K, 313.15 K에서 실시하였다. 각각 등온식의 파라미터들은 단일성분 실험을 통해 결정했고, 결정한 파라미터로 혼합성분의 흡착 평형을 예측하였으며 실험값과 비교하였다. Li-X 제올라이트에서의 H2/CO2, H2/CO, H2/CH4 혼합성분의 흡착평형 실험 결과는 extended langmuir 등온식, extended langmuir-freundlich(L-F) 등온식, dual-site langmuir(DSL) 등온식을 이용해 예측하였으며 실험값과 비교하였다. L-F 등온식은 다른 모델들에 비해 CH4와 H2에서 좋은 예측 결과를 보여주었다. 또한 DSL 등온 식은 CO2와 CO에서 좋은 예측 결과를 보여주었다.
Adsorption equilibria of the gases CO2, CO, CH4 and H2 and their binary mixtures on Li-X zeolite (UOP) were obtained by static volumetric method in the pressure range of 0 to 20 bar at temperatures of 293.15, 303.15, and 313.15 K. Using the parameter obtained from single-component adsorption isotherm. Multicomponent adsorption equilibra could be predicted and compared with experimental data. Extended Langmuir isotherm, Extended Langmuir-Freundlich isotherm (L-F) and dual-site Langmuir isotherm (DSL) were used to predict the experimental results for binary adsorption equilibria of H2/CO2, H2/CO, and H2/CH4 on Li-X Zeolite. Extended Langmuir-Freundlich isotherm predicted equilibria of CH4 and H2 better than any other isotherm. One the other hand DSL isotherm predicted equilibria of CO2 and CO very well.
References
Yang RT, Btterworth, Boston, MA (1987)
Myers AL, Prausnitz JM, AIChE J., 11(1), 121 (1965)
Markham EC, Benton AF, J. Am. Chem. Soc., 53(2), 497 (1931)
Reich R, Ziegler WT, Rogers KA, Ind. Eng. Chem. Process Des. Dev., 19(3), 336 (1980)
Grant RJ, Manes M, Ind. Eng. Chem. Fundam., 5(4), 490 (1966)
Moon H, Tien C, 3(161), 161 (1993)
Suwanayuen S, Danner RP, AIChE J., 26(1), 68 (1980)
Kaul, Bal K, Ind. Eng. Chem. Process Des. Dev., 23(4), 711 (1984)
Han S, Lee H, HWAHAK KONGHAK, 33(6), 720 (1995)
Rutheven DM, Wiley, New York (1984)
Lee JS, Kim JH, Kim JT, Suh JK, Lee JM, Lee CH, J. Chem. Eng. Data, 47(5), 1237 (2002)
Krishna R, Paschek D, Sep. Purif. Technol., 21(1-2), 111 (2000)
Mathias PM, Kumar R, Moyer JD, Schork JM, Srinivasan SR, Auvil SR, Talu O, Ind. Eng. Chem. Res., 35(7), 2477 (1996)
Ahn ES, Jang SC, Choi DY, Kim SH, Choi DK, Korean Chem. Eng. Res., 44(5), 460 (2006)
Jeong BM, Kang SH, Choi HW, Lee CH, Lee BK, Choi DK, Korean Chem. Eng. Res., 43(3), 371 (2005)
Elliott JR, Lira CT, Prentice-Hall PTR
Brunauer S, Deming LS, Deming WE, Teller EJ, J. Am. Chem. Soc., 62, 1726 (1940)
Nam GM, Jeong BM, Kang SH, Lee CH, Lee BK, Choi DK, Korean Chem. Eng. Res., 43(2), 249 (2005)
Hwang D, Oh M, Moon I, HWAHAK KONGHAK, 36(2), 151 (1998)
Kim WG, Yang J, Han S, Cho C, Lee CH, Lee H, Korean J. Chem. Eng., 12(5), 503 (1995)
Myers AL, Prausnitz JM, AIChE J., 11(1), 121 (1965)
Markham EC, Benton AF, J. Am. Chem. Soc., 53(2), 497 (1931)
Reich R, Ziegler WT, Rogers KA, Ind. Eng. Chem. Process Des. Dev., 19(3), 336 (1980)
Grant RJ, Manes M, Ind. Eng. Chem. Fundam., 5(4), 490 (1966)
Moon H, Tien C, 3(161), 161 (1993)
Suwanayuen S, Danner RP, AIChE J., 26(1), 68 (1980)
Kaul, Bal K, Ind. Eng. Chem. Process Des. Dev., 23(4), 711 (1984)
Han S, Lee H, HWAHAK KONGHAK, 33(6), 720 (1995)
Rutheven DM, Wiley, New York (1984)
Lee JS, Kim JH, Kim JT, Suh JK, Lee JM, Lee CH, J. Chem. Eng. Data, 47(5), 1237 (2002)
Krishna R, Paschek D, Sep. Purif. Technol., 21(1-2), 111 (2000)
Mathias PM, Kumar R, Moyer JD, Schork JM, Srinivasan SR, Auvil SR, Talu O, Ind. Eng. Chem. Res., 35(7), 2477 (1996)
Ahn ES, Jang SC, Choi DY, Kim SH, Choi DK, Korean Chem. Eng. Res., 44(5), 460 (2006)
Jeong BM, Kang SH, Choi HW, Lee CH, Lee BK, Choi DK, Korean Chem. Eng. Res., 43(3), 371 (2005)
Elliott JR, Lira CT, Prentice-Hall PTR
Brunauer S, Deming LS, Deming WE, Teller EJ, J. Am. Chem. Soc., 62, 1726 (1940)
Nam GM, Jeong BM, Kang SH, Lee CH, Lee BK, Choi DK, Korean Chem. Eng. Res., 43(2), 249 (2005)
Hwang D, Oh M, Moon I, HWAHAK KONGHAK, 36(2), 151 (1998)
Kim WG, Yang J, Han S, Cho C, Lee CH, Lee H, Korean J. Chem. Eng., 12(5), 503 (1995)